• 締切済み

V,WがR上の線形空間のとき。

V,WはR上の線形空間、f:V→Wは全単射R-線形写像とします。{e_1,…,e_n}がVの基底ならば{f(e_1),…,f(e_n)}はWの基底であると示せますか?

みんなの回答

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

山田くん、No.1 さんに二枚! f が全射であることから、{f(e_i)} が W を生成することが、 f が単射であることから、{f(e_i)} が一次独立であることが導かれる。 ほぼ、定義から定義へ翻訳するだけの証明だから、 自分でやってみたほうがよいと思う。 タネアカシを聞いて「ふ~ん」と思っただけでは 演習にはならない。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

はい

関連するQ&A

  • f:V→Wを体K上のベクトル空間VからWへの線形写像とし,v_1,…,

    f:V→Wを体K上のベクトル空間VからWへの線形写像とし,v_1,…,v_(r+m)∈Vの一部v_(r+1),…,v_(r+m)がKerfの基底であると仮定します. このとき, (1)f(v_1),…,f(v_r)が線形独立 ⇒ v_1,…,v_(r+m)は線形独立 (2)f(v_1),…,f(v_r)がImfの基底 ⇒ v_1,…,v_(r+m)のVの基底 (3)v_1,…,v_(r+m)がVの基底 ⇒ f(v_1),…,f(v_r)はImfの基底 を証明せよという問題なのですが,どれも途中で詰まってしまい,最後まで示せませんでした.どれか一つでも構わないので,教えていただけると助かります. よろしくお願いします.

  • 線形代数の問題で困っています。

    U={F:V→W|Fは線形写像} とおき、 Vを3次元線形空間とし、{v1,v2,v3}を基底とする。 Wを2次元線形空間とし、{w1,w2}を基底とする。 このとき (1)Uは線形空間であることを示せ。 (2)Uの基底を一組求めよ。 (3){v1,v2,v3}、{w1,w2}を用いて同型写像を作ることにより、UとM(2,3)は同型になることを示せ。

  • V:線形空間

    V:線形空間 W1,W2:Vの部分空間 f:W1?W2 → V (?は直和記号) f(x,y)=x+y と定めると,fは線形写像になる. このとき, W1とW2がVを生成する⇒fは全射 はどのように示せば良いですか? 線形写像と言うことは容易に分かりますが全射になることがわかりません. よろしくお願いします.

  • 線型空間 基底の証明

    U, V, U @ V 線型空間 f : U × V → U @ V 双線型写像 (U @ V, f) U と V のテンソル積 f(u, v) = u @ v dim U = m, 基底 {u_1, u_2, ..., u_m} dim V = n, 基底 {v_1, v_2, ..., v_n} S = {u_i @ v_j | 1 ≦ i ≦ m, 1 ≦ j ≦ n} 基底を証明したい <S> = U @ V は f(u, v) を計算して証明できたのですが S が線型独立の証明を教えてください r_11(u_1 @ v_1) + ... + r_mn(u_m @ v_n) = 0 とおいたまま立ち往生です

  • 線形写像と線形変換

    線形写像と線形変換 V , W をK上のベクトル空間とする。このときベクトル空間Vからベクトル空間Wへの写像fが、 Vの任意の要素x,yに対してf(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fをVからWへの線形写像と言う。 これが線形写像の定義です。 別の記載では、R^n,R^mをk上のベクトル空間とする。このときベクトル空間R^n からベクトル空間R^m への写像f がR^nの任意の要素x,yに対して f(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fを R^n からR^m への線形写像という。 ここで、テキストにはfがVからV自身への線形写像である時fを線形変換と呼ぶと記載されているのですが、 「VからV自身への線形写像」のイメージがあまりつきません・・・ 次元が同じ場合であれば線形変換?と思ったのですが間違いでしょうか? よろしくお願い致します。

  • 線形

    問題で、V がC 上の有限次元線型空間でn をその次元としf : V →V は線型写像としたとき、 f^k = 0 となる整数k >= 1 が存在するとき, (1) f の固有値がすべて0 であることを示せ. (2) n = 3 のとき, f のジョルダン標準形はどのようになるか. (3) IV + f は全単射であることを示せ. (IV はV の恒等写像) がわかりません。 (1)はなんとなくわかりましたが、(2)、(3)がわかりません。どなたか回答お願いします。

  • 線形空間と写像、基底について

    線形代数の問題でちょっと分からないので分かる方教えてください。 問題は、 次の集合Xに対して V:=XからRへの写像全体のなす実線形空間 とする。Vの基底を見つけよ。 (1)X={x_1,x_2,x_3} (2)X={x_1,x_2,x_3,……,x_n} (3)X={x_1,x_2,x_3,……,x_n,……} です。写像の基底が分かりません。 よろしくお願いします。

  • 線形写像について質問です.

    線形写像について質問です. f:V→Wを線形写像とします.このとき, fが同型写像 ⇔ fが全単射 はどうやって示せば良いですか? よろしくお願いします.

  • 表現行列の正確な意味とは?

    宜しくお願い致します。 [Q]Let T∈L(V).Write down matrix representation of [T]_β and [T]_β' given the following basis: β:v1,v2,…,vn β':v'1,v'2,…,v'n という問題なのですがこの場合の表現行列とは何を意図するのかはっきりわかりません。 『[定義] n次元F線形空間Vの基底を{v1,v2,…,vn}とし、map g:V→F^nを V∋∀Σ[i=1..n]civi→g(Σ[i=1..n]civi):=t(c1,c2,…,cn) (tは転値行列を表す) でgを与えるとgは同型写像となる。 ここで{v1,v2,…,vn}の順序を変えるとgは別物になってしまうのでこの順序を込めた 基底 {v1,v2,…vn}をβ:=[v1,v2,…,vn]と表す事にし、このgをβによって決まる同型写像 と呼ぶ事にする。 m次元F線形空間Wの基底をβ':=[w1,w2,…,wm]によって決まる同型写像をh:W→F^mと し、 線形写像f:V→Wに対し、合成写像hfg^-1:F^n→F^mは線形写像となる。 行列表現とは始集合のF線形空間Vの基底[v1,v2,…,vn]=:βと終集合のF線形空間Wの 基底[w1,w2,…,wm]=:β'とし、f∈L(V,W)において f(vj)=Σ[i=1..m]aijwi (j=1,2,…,n)で定まる行列(aij)=:Aを βからβ'へのfによる行列表現という』 だと思います。 つまり、表現行列を正確に述べるには"基底何々から基底何々への線形写像何々による表現行列" という風に3項目はっきり述べないといけないと思います。 さて、線形変換の場合, 上記の問題文で[T]_βと書いた時、これは (1)基底βからβへの線形写像Tの表現行列 (2)基底βからβ'への線形写像Tの表現行列 (3)基底β'からβへの線形写像Tの表現行列 のどれを意図しているのでしょうか?

  • 線型代数

    実線型空間R^4におけるv1,v2,v3,v4で張られる部分空間をWとします。また、  v1=t(1,1,-2,0),v2=t(1,-1,0,-2),v3=t(-2,1,1,3),v4=t(-1,2,-1,3) とします。ここで、Wの基底をv1,v2とすると、直交補空間W’の基底は、  u1=t(1,1,1,0),u2=1,-1,0,1) dimW’=2 となります。 以上の設定の下で、次の問題がよくわからないので質問させていただきます。 (1)2×4行列Aで、KerF=Wとなるものを1つ求める。 (2)4×2行列Bで、ImF=W’となるものを1つ求める。 という問題です。ここで、線型写像fについては、m×n行列Xに対して、 f;R^n→R^mとし、f(v)=Xv(vはR^nの元)という写像です。 求める行列を具体的に文字で置いて計算してみたのですが、うまくいきません。 (1)については、まず求める行列Aを A=|a1 a2 a3 a4| |b1 b2 b3 b4| と置いて、KerF=Wより、v1をとってAv1=0というように計算していこうと考えましたが、1行と2行の係数が同じになってしまいます。(2)についても同様の考え方で計算してみたのですが、この場合も同じような結果になってしまいます。どのように考えていったらいいのでしょうか?ご教授お願いします。 以上読みづらい文章となってしまいましたが、よろしくお願いします。