• ベストアンサー

積分

 次の積分ができません。 どなたか教えてください。  f(x)=(1/2π)∫[-∞~∞] (i/p){exp(-ipb)-exp(-ipa)}dp expにオイラーの公式を使うと cos(pb)/p などが出てきて積分できません。  

質問者が選んだベストアンサー

  • ベストアンサー
  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.1

{}の中の第1項目を見ると、質問者のもう一つの質問の式と基本的に同じです。 2項目はp=-qとでもおくとやはり同じような式になるでしょう。ただしpとqは符号が違うのでご注意を。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

回答No.2

あなたの過去の質問から、現在複素関数論を履修中だと思いわれます。 expをローラン展開して、実積分を複素平面の上半分の半円を使った積分を施せば解けると思います。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • exp(-π(t^2))のフーリエ変換の積分計算で

    f(t)=exp(-π(t^2))のフーリエ変換の積分計算でつまずいています。 ∫(-∞->∞)f(t)*exp(-iωt)dt で、exp(-iωt)をオイラーの公式でcosとsinの式に直し、偶関数、奇関数の性質からsinの項が消え、 2∫(0->∞)exp(-π(t^2))*cos(ωt)dtとなりました。 しかし、eの指数部分のt^2が厄介で積分ができません。 積分方法、または別解がありましたらご教授いただけると幸いです。

  • 積分値を複素関数を使って求める

    お世話になります。 【問題】 実変数θに対する下記の積分値を、複素関数を使って求めよ。 ∫[ 0 → 2π ]1 / ( 5 - 3cosθ )^2 dθ 【自分の解答】 オイラーの公式より cosθ = ( exp( iθ) + exp( -iθ ) ) / 2 これを与式に代入して ∫[ 0 → 2π ]1 / ( 5 - 3 ( exp( iθ) + exp( -iθ ) ) / 2 )^2 dθ = (*) ここで z = exp( iθ) + exp( -iθ ) とおくと dθ/ dz = 1 / (dz / dθ) = 1 / iz ∴dθ= ( 1 / iz )dz また θ:0 → 2π z :2 → 2 よって (*) = ∫[2 → 2]1 / ( 5 - 3z / 2 )^2 ( 1 / iz )dz (ここから不明) 【質問】 上記のやり方では積分範囲が2 → 2となり被積分関数がどんなものであろうとその積分値は0になってしまいます。 私の解答は間違っていると思うのですが、何が間違っているのか、どうすれば正しくなるのかがわかりません。 どなたかご教授よろしくお願いします。

  • 定積分の変数変換

    岩波 数学公式I(p258)の以下の定積分の変数変換はどのようにするんでしょうか。どなたか教えてください。 ∫(0,π/2)exp(-cosx)cos(sinx)dx = -∫(x,∞)(sinx/x)dx

  • 積分の問題です

    原点を中心とし、半径Rの円周上を反時計回りに一周する周回積分路を考える。 f(z)=1/z^2+4z+1とする。z=e^iθとおいてオイラーの公式を用いるとこの積分からI=∫(0→2π)dθ/cosθ+2が求められることを示し、値を求めなさい。 お願いします。

  • 積分計算

    この積分計算をできるだけ分かりやすく丁寧に教えて下さい、よろしくお願いします。 f(r)=1/(√(2π)σ)*exp(-r^2/(2σ^2)) としたときのIを求めなさい。 I=∫[0→x] ∫[0→2π] r*f(r)dθdr+∫[x→R] ∫[cos^-1(x/r)→2π-cos^-1(x/r)] r*f(r)dθdr

  • 複素積分

    f(x)=1/(2+cos(x))の複素フーリエ係数c_nを求める過程で、 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x))を計算したいのですが途中で行き詰まってしまったので指南のほどをお願いします。 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x)) =∫_[0<x<2π]exp(-ni(x-π))/(2-cos(x))  積分範囲の変換 =2i∫_[周回積分]z^(-n)cos(nπ)dz/(z^2-4z+1)    z=exp(ix)と置いて置換 ここからnが奇数と偶数の場合に分けて計算しようと考えたのですが、どうしたらよいかわかりません。 よろしくお願いします。

  • 積分の問題

    積分の問題なのですが、 δ(p)=(1/2π)∫[-∞,∞]exp(ipx)dx iは複素数 とし、 Θ(p)=∫[-∞,∞]δ(p')dp' を利用して ∫[-∞,∞]sin(px)/x dx を求めよ。 という問なのですが、どなたか解法または解答を教えてください。 よろしくお願いします。

  • ガウス積分を含む関数の微分について

    f(u)=∫exp(-ax^2+iux)dx のuに関する微分df(u)/duを求めるという問題です。iは虚数単位で、a>0です。積分範囲は-∞~∞です。 ガウス積分の公式からexpの最初の項が√π/aになると思ったのですが、オイラーの公式のような∫exp(iux)dxの部分が微分や積分ができません。どうやら答えはf(u)*(-u/2a)になるようなのですが。。 答えがf(u)*(-u/2a)となることを示せれば、1階の微分方程式が成り立ち、解析的にf(u)が決定できそうなんです。すみませんが回答の程よろしくお願いします。

  • オイラーの公式と微積分の関係

    sinとcosは微積分において,ちょうどガウス座標での回転に一致しているそうですが,このこととオイラーの公式とはどのようにつながっているのでしょうか。sin をiとおくかcosをiと置くのかわかりませんが、不思議な感じがします。]

  • 複素積分

    I1=∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxを複素積分を使って求めます。 まず ∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxの被積分関数の分子にi*sin(a*x)を (iは虚数単位)を加えても加えた部分が奇関数でかわらないので加え ると ∫[-∞,-∞]{cos(a*x)+i*sin(a*x)}/(x^2+b^2)dxとなります するとI=∫[-∞,-∞]exp(i*a*x)/(x^2+b^2)dxです。 ここで複素積分 I=∫exp(i*a*z)/(z^2+b^2)dz (積分路は実軸と虚軸の正の部分を通る 反時計回りの半径Rの半円) またI2=∫exp(i*a*z)/(z^2+b^2)dz (積分路は虚軸の正の部分のみを通 る反時計回りの半径Rの半円)を考えるとRが十分大きいとき I=I1+I2・・・(1)になります。 Iは留数定理よりI=2*π*i*Res[f,i*b]=π*exp(-a*b)/b・・・(2) I2はz=R*exp(i*θ)とおき I2=∫[0,π]exp(i*a*R*exp(i*θ))/(R*exp(i*θ)^2+b^2)dθ =∫[0,π]exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)/(R^2*exp (2*i*θ)+b^2)dθ 三角不等式より 0<|I2|<∫[0,π]|exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)|/|(R^2*exp(2*i*θ)+b^2)|dθ<π*R*exp(-a*R*sinθ)/|-R^2+b^2|・・・(3) ここでsinθ >0よりでexp(-a*R*sinθ)<1なので π*R*exp(-a*R*sinθ)/|-R^2+b^2|<π*R/|-R^2+b^2|となり π*R/|-R^2+b^2|はR-->∞で0なので結局 |I2|-->0   なので(1)より I1=π*exp(-a*b)/bが答えです。  これはわかるのですが、スタートで i*sin(a*x)ではなく-i*sin(a*x)を加えても変わらないですよね? そこで-i*sin(a*x)を加えて実際にやってみると (2)の部分はπ*exp(a*b)/bに変わってしまい、また (3)の部分はπ*R*exp(a*R*sinθ)/|-R^2+b^2|となってしまいこれでは R-->∞で発散するように思えます。 どこがまちがっているのでしょうか

カッティング時間が更新される
このQ&Aのポイント
  • カッティングしたい用紙をスキャンして、カットする際に時間が増えてカットされなくなる問題が発生しています。
  • 液晶画面には、カット終了までの時間が更新されると表示されます。
  • お使いの環境については明記されていません。
回答を見る