シュレディンガー/複素積分の解法とヒント

このQ&Aのポイント
  • シュレディンガー方程式を用いた複素積分の解法についてヒントを求めています。
  • 積分の計算においてオイラーの公式やガンマ関数の活用が必要ですが、まだガンマ関数について学習していないため、使用方法についてわからない状態です。
  • 初歩的な複素積分を扱っており、解けるヒントを求めています。
回答を見る
  • ベストアンサー

シュレディンガー/複素積分

すみません、なにかヒントをください。学部2年女子です。 シュレディンガー方程式、 ih(∂ψ/∂t)=-(h^2/2m)(∂^2ψ/∂x^2) の解Ψ(x,t)=1/√(2π)∫exp(-ihk^2/2m+ikx)・F(k)dk F(k)を求めたところ、 F(k)=A√2σexp(-σ^2k^2) になりました。 そこで解にあてはめて、積分をしたいのです。 (hバーをhとかきました。Aは定数です。(規格条件から求め済)積分区間はどれも-∞から∞です。) 積分から先に息詰まりました。 自分では ∫exp(-ihk^2/2m+ikx)・exp(-σ^2k^2)dk の計算でオイラーの公式でとくのかな? とも考えましたが、先生がヒントでガンマ関数を使うとか言っていて、 もうよくわかんない状態です。 ちなみにまだガンマ関数、を習っていなく、使い方もよくわかりません。(一応調べましたが、理解できる能力がありませんでした) 複素関数は本当に初歩的な複素積分しかやっていません。 なにか解けるヒントをと思い投稿しました。 恐縮ですがどうぞご教授のほどおねがいします。 また、見難い文章ですみません。 なにか間違いがあればご指摘くださぃ

質問者が選んだベストアンサー

  • ベストアンサー
  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.1

>Ψ(x,t)=1/√(2π)∫exp(-ihk^2/2m+ikx)・F(k)dk Ψ(x,t)=1/√(2π)∫exp(-ihk^2t/2m+ikx)・F(k)dk の誤植ですかね?(expの中の第1項にtをかけました) とりあえず、今の状況としては、 (t=0での?)適当な初期条件を満たすように >F(k)=A√2σexp(-σ^2k^2) というのを求めたので、一般のtについてψ(x,t)を計算しようと思ったが、 >∫exp(-ihk^2/2m+ikx)・exp(-σ^2k^2)dk をどうやって計算すればいいか分からん、という感じでしょうか。 まぁ、expの中身が2次式ですから、平方完成してやればガウス積分の形になりますよね。 あと、 http://ja.wikipedia.org/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E7%A9%8D%E5%88%86 を見ると、ガンマ関数云々とありますので、先生のヒントはこれの事を言っているのかも。

dogtaisi
質問者

お礼

回答ありがとうございます。 すみません、tを忘れていました。 おっしゃるとおりです。 ガウス積分についてやってみます。 先が見えそうで本当に助かりました。

関連するQ&A

  • 複素積分

    以下の複素積分ができません。 どなたかおしえてください。 f(x)=(1/2π)∫[-∞~∞] (i/x)exp(ikx) dx (i は複素数)

  • 複素積分

    ちょっとグリーン関数を勉強していて、複素積分を忘れてしまった部分があるので教えてください。 ∫_[-∞~∞] {exp(ikr)}/k dk=iπ の計算過程です。 お願いします。

  • 複素積分の計算について。

    複素積分の計算について。 正攻法ではないのですが、次の複素積分をべくとるkについて極座標で表して計算したいです。 Φ(r,t) =(1/2π)^3 ∫ dk exp{ik・r - Dt(k^2)} ただしt>0,D>0で,r,kはベクトルです。積分範囲は(-∞,∞)です。 ベクトルkについて極座標表示すると、指数の中に三角関数が出たりして、それ以降ができません。どなたか教えてください。

  • 積分ができません!

    積分exp{(-a^2k^2)/2 + ikx - ihk^2t/2m} dk の積分のやりかたがわかりません。kについて平方完成とかしてみたのですが、結局わかりませんでした。 -∞から∞までの積分です。 どなかた至急、おねがいします!!

  • シュレーディンガー方程式に関する問題です。

    (1)シュレディンガー方程式において、V(x)=0とする。Φ=Ae^ikx+Be^-ikxのとき、全エネルギーEを求めると、E=(h/2π)^2*(1/2m)k^2であってますか? (2)また、B=0のとき、Φ=Ae^ikxの位置xに粒子を見出す確率密度は|Φ|^2を計算して求めると思うのですが、複素共役のとり方がよくわかりません。複素共役をとって計算するとA^2になると思うのですが、これであってますか? (3)次に、0<x<Lの領域でV(X)=0で、それ以外は無限大であるとする。この粒子の全エネルギーEと規格化された波動関数Φを求める問題ですが、この問題をどのように解けばよいか教えてください。この問題はΦをオイラーの式で展開しないと解けませんか?

  • 極座標での積分について。

    極座標での積分について。 次の複素関数の積分を極座標で計算しないといけないのですが、うまくいきません。 Φ(r,t) =∫(1/2π)dk exp{ik・r - Dt(k^2)} ただしt>0,D>0で,r,kはベクトルです。積分範囲は(-∞,∞)です。 どなたか分かる方教えてください。

  • 留数定理による実定積分の計算について

    留数定理による実定積分の計算について 現在複素積分について勉強中のものです。 ∫^{+∞}_{-∞}f(x)exp{itx}dxという形の積分の計算なのですが t>0については ∫^{+∞}_{-∞}f(x)exp{itx}dx=2πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が偶関数のとき ∫^{+∞}_{0}f(x)cos(tx)dx=πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が奇関数のとき ∫^{+∞}_{0}f(x)sin(tx)dx=πΣ^{m}_{k=1}Res{f(z)exp{itz}} となりますが t<0のときはどうなるのでしょうか。 マイナスになるだけでしょうか。 よろしくお願いします。

  • 留数定理による実定積分の計算について

    留数定理による実定積分の計算について 現在複素積分について勉強中のものです。 ∫^{+∞}_{-∞}f(x)exp{itx}dxという形の積分の計算なのですが tを実数とし,kはΣの添え字,mは極の個数,iは虚数とします. このときtがt<0のとき ∫^{+∞}_{-∞}f(x)exp{itx}dx=-2πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が偶関数のとき ∫^{+∞}_{0}f(x)cos(tx)dx=πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が奇関数のとき ∫^{+∞}_{0}f(x)sin(tx)dx=-πΣ^{m}_{k=1}Res{f(z)exp{itz}} となる これで合っていますでしょうか? よろしくお願いします。

  • 複素関数論の問題

    f(x)=exp(mx)/{1+exp(nx)} 上記の関数f(x)に対して、実関数の積分 ∫[-∞→∞] f(x) dx を複素積分を用いて解きなさい。ただし、0<m<nである。 上に示した問題(某大学院の過去問)について解けなくて困ってます。 解法をよろしくお願いいたします。

  • 複素積分を使わずに解ける

    複素関数の勉強をしていて、疑問に思ったことがあります。 次の定積分を求めよ、という問題です。 ∫(from 0 to ∞)exp(-x^2) cos2bx dx (bは定数) この問題は、複素平面上の長方形状の積分路に沿って積分して答えが出せたのですが、以下のようなやり方をしてみました。 まず、求める積分はbの関数とみなせるので、I(b)とおきます。 次にI(b)をbで微分します。被積分関数をbで偏微分し、部分積分を使うと、 dI(b)/db = -2bI(b) となります。これはbの微分方程式になっているので、これを解くと、 I(b) = Aexp(-b^2) (Aは定数) となります。元の式にb=0を代入すれば、 I(0) = sqrt(π)/2 となるので、 I(b) = sqrt(π)exp(-b^2)/2 という結果になります。 なんだか複素積分をするよりも簡単に答えが出せたのですが、このやり方でもよいのでしょうか。参考書にはこの方法が載っていなかったのですが。