• ベストアンサー

数値積分の入門問題なのですが・・・

∫f(x) dx ≒ w_0*f(1/4) + w_1*f(5/6) 積分区間は0 ≦ x ≦1です。 Determine the weights w0 and w1 so that the rule be exact for polynomials of degree as high as possible.とあるので多項式補填を使うのは何となく理解できたのですが、具体的にはどうやればw_0とw_1を求めるのでしょうか? 自信は無いのですが、 w_0 = 1/4 、w_1 = 25/36であっているでしょうか? もし間違っていたらやり方をどなたか教えてください ><

質問者が選んだベストアンサー

  • ベストアンサー
  • ninoue
  • ベストアンサー率52% (1288/2437)
回答No.2

始めて見た式で、0,1間の2点を取るのであれば α,1-α の2点を取る等もっと適切な点の取り方がありそうには思われます。 それは別問題としてまず最も簡単な常数値の積分を考えると、 w_0+w_1=1 の関係が成立している必要がありそうです。 本当は積算値自体の最適化を考えたい所ですが、一般的には無理ですね。 先ず任意の滑らかな関数について考え、その関数を1次式で近似したとしてその残留誤差の(0,1)間の積算値がゼロになるように近似された場合を考えます。 この場合のw_0,w_1の重みは簡単に求まりますね。 関数の近似式を2次式で考えて積算値を最適化した場合を考えます。 2次式で近似して積算した場合の残留誤差をゼロと置いた式を考えれば良いのではと思われます。 以上の考えから、2次式について、1/4, 5/6での関数値の重み付きの和が 0,1間の積算値と等しくなるように w_0,w_1の値を決めたら良いのではないでしょうか。 f(x) <=> a +bx +cx^2; ∫(0,1){a +bx +cx^2}dx = a +b/2 +c/3 w_0*(a +b/4 +c/16) +w_1*(a +b*(5/6) +...) = a +b/2 +c/3; 以上の考えから w_0, w_1 は求まります。 なお次等も参考にして下さい。 Wikipedia:数値積分、近似公式、ガウス求積

koni-ami
質問者

お礼

ありがとございました! 教えていただいた通りにしたところ簡単な恒等式が出て来て、解く事が出来ました!!!

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

それ, どうやって出したの?

関連するQ&A

  • 数値積分の重み関数について

    被積分関数 f(x) をガウスの積分公式を使って数値積分する場合、重み関数を w(x) とすると、 ∫w(x)f(x)dx≒Σaf(xi) となりますが、 これでは、被積分関数は f(x) でなくて w(x)f(x) となってしまうと思います。 なので、本来計算したい ∫f(x)dx の値ではなく、∫w(x)f(x)dx の値となるので、結果が変わってしまうのではないかと思うのですが、あまりにも低レベルのことなのか、この疑問を解消してくれるような説明が本に載っていません。 どなたか教えてくれませんでしょうか。

  • 積分の問題です。

    積分の問題です。 関数f(x)が区間(-√(a^2+b^2),√(a^2+b^2))で積分可能な時、f(x)は次の式を満たすことを示せ。 ∫[0→2π]f(acosx+bsinx)dx=2∫[-π/2→π/2]f(√(a^2+b^2)sinx)dx この問題が分かる方がいましたら参考にさせていただきたいです。 よろしくお願いいたします。

  • 広義積分の問題を教えてください。

    fとgを区間I=(0,∞)で定義された連続非負関数で、この区間で広義積分可能であるとします。 さらに、 f(x)→0 (x→0) xg(x)→0 (x→∞) を満たしているとき、 lim[n→∞] n∫f(x)g(nx)dx = 0 (積分区間はI) が成り立つことを示したいです。 以下のように積分区間を0から1,1から∞にわけて、 それぞれ評価しようとしましたがうまくいきません。 具体的には、 J=n∫f(x)g(nx)dx とおいて、 J= n∫f(x)g(nx)dx + n∫f(x)g(nx)dx (最初の項を(1) 2つめの項を(2)として) (1)の積分区間は0~1 (2)の積分区間は1~∞ (1)において、g(nx)が非負なので、平均値の定理から、 (1)=nf(Cn)∫g(nx)dx となるような、nに依存する値 Cn∈[0,1]が存在。 nx=tと置換すれば、 (1)=f(Cn)∫g(t)dt    (積分区間は0からnに変化) というキレイな形になり、 ∫g(t)dt  は、gが広義積分可能なことから、有限値に収束。 このままf(Cn)が0に収束してくれれば良いんですが、 Cnは [0,1]上 特に性質なくいろんなところをとりえます。 だから、Cnが単調減少して、仮定の条件をつかって クリア!みたいなことにはならないのです。 根本的に方針が違うのだと思うのですが、 どなたかヒントでもいいので教えてください。

  • 3次の定積分の問題です。

    (1) ∫(x-α)(x-β)g(x) dxの定積分(区間:-1→1)が0となるときのα、βを求めよ。    ただし、g(x)は1次関数である。 (2) ∫f(x) dx = f(α)+f(β) (積分区間:-1→1)を証明せよ。    f(x)は3次関数である。 という問題です。 (1)はg(x)=ax+bとおいて計算してみたのですが、  a≠0よりα+β=0  b≠0のときα=1/√(3)、β=-1/√(3)      またはα=-1/√(3)、β=1/√(3) というスッキリしない回答になってしまいました。 また、(2)を見据えた答えにならずよくわかりません。 途中計算も含めて御解答していただけると助かります。 よろしくお願いします。  

  • 積分の問題

    積分の問題 ∫x^3・e^(-x)dx 積分区間は0→∞です。 これと ∫x^6・e^(-2x)dx 積分区間は0→∞です。 上の2問についてです。 この二つは部分積分法で解こうとすると不定形がでてくるので不可能でした。 そこで、広義積分という方法が考えられますが、どのように解いていいのか分からないんです。 教科書等は読んで理解しましたが、例題にはe^(-x)のようなものがでてこず、1/(x^2)+1のような分数関ばかりなので困っています。 分かる方、お力を貸してください。 宜しくお願いします。

  • 積分 証明 問題

    積分 証明 問題 (1)∫[0~π](x・sinx)dxをx=π-tとおいて求めなさい。 (2)f(x)が区間[-1,1]で連続であるとき、次の等式が成り立つことを証明せよ。 ∫[0~π]x・f(sinx)dx =π/2∫[0~π]f(sinx)dx (1)はπと求めることが出来ました。 (2)も(1)と同様に置換して証明できました。 問題にある「f(x)が区間[-1,1]で連続であるとき」に関しては 特に何も考えなかったのですが「f(x)が区間[-1,1]で連続であるとき」 とは何を言いたいのでしょうか?sinxの周期は-1から1なので、 単純にf(x)が連続のときと解釈してよいですか? 以上、ご回答よろしくお願い致します。

  • ルベーグ積分の収束について

    以下の定理について質問があります。 X∈Rとする。 可積分関数の列{f_n(x)}(n≧1)が Σ(n=1~+∞)∫(積分区間はX)|f_n(x)|dx<∞ をみたせば Σ(n=1~+∞)|f_n(x)|も可積分で Σ(n=1~+∞)∫(積分区間はX)|f_n(x)|dx=∫(積分区間はX)Σ(n=1~+∞)|f_n(x)|dx 以上の定理について、何故n≧1なのでしょうか? Σ(n=-∞~+∞)∫(積分区間はX)|f_n(x)|dx<∞ の場合は成り立たないのですか? どなたか詳しい解説をよろしくお願い致します・・・。

  • 微積分の問題です。

    微積分の問題です。 問題自体はシンプルなのですがどうしても解けなくて困っています。 以下問題です。 ----------------------------------------------------------------- 問 log (∫[0,1] exp(f(x))dx) と ∫[0,1] f(x)dx の大小を比較せよ。 ただし、f(x)は閉区間 [0,1] 上の実数値の連続関数とする。 ----------------------------------------------------------------- 2日ほど考えましたが撃沈しました。 どなたか解き方を教えていただけると幸いです。 よろしくお願いします。

  • ☆積分積分積分積分積分☆

    ☆積分積分積分積分積分☆ この問題をできるだけ分かりやすく丁寧に教えて下さい、お願いします。 次の条件を満たすXの三次の多項式P(X)を求めよ。 (1)任意の二次以下の多項式Q(X)に対し、∫〈1、ー1〉P(X)Q(X)dX=0 (2)P(1)=1

  • 受験数学 積分の問題の説明お願いします。

    積分の表記があっているのか分からないのですが、ご了承ください。 ∫[-1,1]f(x)dx ←積分区間-1から1です。 =∫[-1,1](x^2-4x+p)dx =2∫[0,1](x^2+q)dx ここの変形がよく分かりません。 ∫[-1,1](x^2-4x+p)dx =2∫[0,1](x^2-4x+p)dx だと思ったのですが、正答で何がされたのかが分かりません。