• ベストアンサー

可積分について

∫|f(x,y)|dx<∞ (積分区間はR全体) が成り立てば |f(x,y)|≦g(x)かつ∫g(x)dx<∞を満たすg(x)が存在する これはあっていますでしょうか? どなたか解説をお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

f(x,y) = y exp(-xx) なんかが反例かな。

その他の回答 (2)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.3

あそっか, g の方は y が消えてるんだ. 気づかなかった. と勘違いしてたので, #1 は完全に無視してください.

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

何が疑問なのかが分からん. ど~見ても自明でしょ?

関連するQ&A

  • ルベーグ積分の収束について

    以下の定理について質問があります。 X∈Rとする。 可積分関数の列{f_n(x)}(n≧1)が Σ(n=1~+∞)∫(積分区間はX)|f_n(x)|dx<∞ をみたせば Σ(n=1~+∞)|f_n(x)|も可積分で Σ(n=1~+∞)∫(積分区間はX)|f_n(x)|dx=∫(積分区間はX)Σ(n=1~+∞)|f_n(x)|dx 以上の定理について、何故n≧1なのでしょうか? Σ(n=-∞~+∞)∫(積分区間はX)|f_n(x)|dx<∞ の場合は成り立たないのですか? どなたか詳しい解説をよろしくお願い致します・・・。

  • 定積分と面積・・

    「曲線C:x^3-x^2とCに接する異なる直線L,Mがある。CとLとで囲まれた部分の面積と、CとMとで囲まれた部分の面積とが等しいとき、LとMとは平行であることを示せ」という問題の解説で「f(x)=x^3-x^2とおくとf'(x)=3x^2-2xであるから曲線C上の点(α,α^3-α^2)における接線の方程式はy=(3α^2-2α)(x-α)+α^3-α^2 ∴y=(3α^2-2α)x-2α^3+α^2この右辺をg(x)とおくと、f(x)-g(x)=x^3-x^2-(3α^2-2α)x+2α^3-α^2=(x-α)^2(x+2α-1) β=1-2αとおくと f(x)-g(x)=(x-α)^2(x-β) でえあり、CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α)  α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)・・・・・」と続いていくのですが「CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α)  α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)」のところのいみがわかりません・・  教えてください!!

  • 数学 積分

    (1)F(x)が0≦x≦1で連続な関数である時、∫xF(sinx)dx=π/2∫F(sinx)dxが成立することを示し、 ∫xsinx/3+sinx^2・dxを求めよ。 積分区間はすべてπから0までです。 t=π-xと置くのか定石とか書いてありますが、なぜこういうことをするのですか? それと、成立することを示した後、なぜsinx/3+sinx^2をF(sinx)と置くのでしょうか? これはそうしないと解けないのですか? 詳しくお願いします。 (2)∫|1-√2-2sinΘ^2-2√3sinΘcosΘ| 積分区間πから0を求めよ。 絶対値の中を2cos(2Θ+3π)-√2にして、それで(2Θ+3π)をtとかおいて積分区間を7π/3, π/3まではわかるんですが、それから解説だと、9π/4からπ/4までを積分すればいいとなっていますが、なぜでしょうか? 周期関数はどこから区間を始めても、定積分の値は等しいとなっていますが、なぜですか? 周期関数とはsin,cosだけでで表されてるものだけをいうのでしょうか? それ以外に周期的な関数というのは存在するでしょうか? 解説お願いします。

  • 不定積分についてです

    (置換積分) f:[a,b]→[c,d]がC^1級でg:[c,d]→Rが連続であるとき次の式が成立する ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy この定理が成り立つのは良いのですが,不定積分について ∫g(f(x))f'(x)dx =∫g(y)dy が成り立つ理由がわかりません… 部分積分も同様に,定積分の式ならわかるのですが、不定積分について ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) となる理由がわかりません。 大学数学での不定積分のきちんとした定義とともに、 ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) の成り立つ理由がわかる方がいらっしゃいましたら回答よろしくお願い致しますm(__)m

  • 2重積分の積分区間

    次の問題の積分区間の取り方がわかりません。 領域D={(x,y)|0≦x≦1,0≦y≦x}のとき、 f(x,y)=x+2yの重積分 ∬Df(x,y)dxdy を求めよ。 yで積分してからxで積分するやり方だと、 前者の積分区間が0→x 後者の積分区間が0→1 となり、これはまあなんとなくわかるのですが、 xで積分してからyで積分するやり方だと、 前者の積分区間がy→1 後者の積分区間が0→1 となるようなのですが、どうしてこうなるのでしょうか。 この積分区間の取り方がよくわからないゆえ、 他の問題も全然解けません。 どなたか解説をお願いします。

  • 偏微分、部分積分

    部分積分の公式として、 ∫f'(x)g(x)dx = f(x)g(x) - ∫f(x)g'(x)dx というのがありますが、このダッシュは偏微分を表しているのでしょうか? 勿論1変数なら偏微分もへったくれもないと思うのですが、今、 ∫∂f(x,y)/∂x g(x,y)dx という積分をしたいと思っているのですが、これを部分積分して、 f(x,y)g(x,y)-∫∂g(x,y)/∂x f(x,y)dx とすることは可能なのでしょうか?

  • 畳み込み積分の積分区間の特定について

    統計の参考書中に、畳み込み積分の解説がされており、確率変数X、Yが独立ならば f_XY(x,y)=f_X(x)・f_Y(y)と変形でき、 T=X+Yと新しい確率変数を定義した場合、Tの確率密度は f_T(t)=∫-∞→∞ f_X(x)f_Y(t-x) dx とあらわせる。 と書いてありました。 ここまではいいのですが次の例題で早くもわからなくなりました。 例題 ではX,Y独立でf_XY(x,y)に従うとき、 f_XY(x,y) = 1/9 (0≦x≦3,0≦y≦3) 0 (それ以外の(x,y)のとき) ここでT=X+Yによりあらたな確率変数Tを定義する。このときのTの確率密度f_T(t)を求めよ。 というところで、 独立より、∫0→3 f_X(x)dx = ∫0→3 f_Y(y)dy = 1を考慮に入れると、 f_X(x) = 1/3 となる。 ここまでは、全確率の関係と独立の関係から解釈はできたのですが、次の解説で 以上から積分区間は (i) 0≦t≦3のとき (ii) 3≦t≦6のとき と場合分けができる。 (i)のときは0≦x≦tとなり、 (ii)のときはt-3≦x≦3になる と書いてありましたがここの理解がまったくわかりません。 どうして積分区間が上記のことからi&iiの場合に分けられて、そしてそのときのxの区画までも表せるのでしょうか。 お恥ずかしいですがここの積分区間の理解ができていないので大変困っています。 ご指導お願い申し上げます。

  • 広義積分の問題を教えてください。

    fとgを区間I=(0,∞)で定義された連続非負関数で、この区間で広義積分可能であるとします。 さらに、 f(x)→0 (x→0) xg(x)→0 (x→∞) を満たしているとき、 lim[n→∞] n∫f(x)g(nx)dx = 0 (積分区間はI) が成り立つことを示したいです。 以下のように積分区間を0から1,1から∞にわけて、 それぞれ評価しようとしましたがうまくいきません。 具体的には、 J=n∫f(x)g(nx)dx とおいて、 J= n∫f(x)g(nx)dx + n∫f(x)g(nx)dx (最初の項を(1) 2つめの項を(2)として) (1)の積分区間は0~1 (2)の積分区間は1~∞ (1)において、g(nx)が非負なので、平均値の定理から、 (1)=nf(Cn)∫g(nx)dx となるような、nに依存する値 Cn∈[0,1]が存在。 nx=tと置換すれば、 (1)=f(Cn)∫g(t)dt    (積分区間は0からnに変化) というキレイな形になり、 ∫g(t)dt  は、gが広義積分可能なことから、有限値に収束。 このままf(Cn)が0に収束してくれれば良いんですが、 Cnは [0,1]上 特に性質なくいろんなところをとりえます。 だから、Cnが単調減少して、仮定の条件をつかって クリア!みたいなことにはならないのです。 根本的に方針が違うのだと思うのですが、 どなたかヒントでもいいので教えてください。

  • 可積分ということは端のほうではほぼ0?

    「   ∫_R |f(x)| dx < ∞のとき(可積分のとき)   lim_{B->∞} ∫_{|x|>B} |f(x)| dx -> 0   が成り立つ 」 の証明がわかりません。 否定をして、適当なε>0が存在して、任意のδ>0に対して、 適当なB>δが存在して、∫_{|x|>B} ≧ εが成り立つ と仮定して矛盾を導こうと考えていたのですが、 うまくいきません。 δのとり方をうまくしたらできると思うのですが、 教えて頂けないでしょうか?

  • 部分積分の疑問

    部分積分とは、部分的に積分するものですよね。全体を積分しなくてもいいんでしょうか。 { f( x )g( x ) } ′ = f ' ( x )g( x )+f( x ) g ' ( x ) の両辺を積分し,式を整理すると, ∫ { f( x )g( x ) } ' dx =∫ { f ' ( x )g( x )+f( x ) g ' ( x ) }dx f( x )g( x )=∫ f ' ( x )g( x ) dx+∫f( x ) g ' ( x )dx ∫f( x ) g ' ( x )dx =f( x )g( x )-∫f ' ( x )g( x ) dx となり,部分積分法の公式が求まる。 とあるのですが、f( x )g( x )を求めなくてはいけないのでは、と思ってしまうのですが。