• 締切済み
  • 困ってます

微分方程式の問題です。

微分方程式の特性方程式による解法についてですが、重根λsをもつとき、基本解系にte^(tλs)が含まれるのはなぜですか? 代入したら成り立つからというのではなく、どういう理論で出てきたのか知りたいです。 もしかしたら、先人が目の子で探したのかもしれませんが・・・

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数59
  • ありがとう数0

みんなの回答

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

d^2x/dt^2 = 0 の解を考えてみるのが一番早いか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分方程式

    問題を解いていて少し疑問に思ったので質問させてください。 u=u(t)を未知関数として A(du/dt) + B*u = E*sin(ωt) について、一般解を求め、その後初期条件u(0)=u0のもとで解け。 ただし、A,B,E,ωは正定数とする。 上記のような問題なんですけど、これは一階微分方程式ですよね? 一般解は、二階微分方程式では特性方程式によって求めた基本解と、未定係数法で求めた特殊解を重ね合わせて作るという印象があります。 このような一階微分方程式の場合はどのように解けばいいですか? 二階の時と同じように解いてよいならば、特性方程式の解から基本解を作る時など、二階微分方程式の時と同じようにやってよいものか疑問です。 特殊解も未定係数法もつかってよいのでしょうか。 詳しい方いましたら教えてください。

  • 微分方程式の問題ですが・・・

    y´´-3y´+y=e^x cosx という微分方程式をy=e^x (Acosx+Bsinx)の形で求めよという問題ですが、同次方程式の解と特殊解の解を求めればいいと思うのですが、 特性方程式λ^2 -3λ+1=0で解きます。解の公式で解くとλ=3±√5/2という解がでたのですがあっているのでしょうか?もしあっているとしたら基本解は実数解になるのですが、y=e^x (Acosx+Bsinx)の形で求めよという問ですので基本階は共役複素数解にならないといけないですよね?僕はどこを間違えているのでしょうか?教えてください

  • 微分方程式

    y1(x),y2(x)が2階線形微分方程式 y''+p(x)*y'+q(x)*y=0の基本解ならば、 a^2≠1とするとき y1(x)+a*y2(x),a*y1(x)+y2(x) もこの微分方程式の基本解となることを証明したいのですが、どうすればいいのか分かりません どなたかお願いします。

  • 微分方程式

    微分方程式の勉強をしているのですが、 本の微分方程式を解く例題で y''-2y'+y=xe^x 特性方程式s^2-2s+1=0は2重解s=1をもつ。これより補助方程式の一般解は y=e^x(Ax+B) である。 与方程式の右辺を微分して生ずる関数は、xe^x,e^xであるが、これらは 上の一般解に含まれている。このような場合特殊解を求めるために、xe^xに特性方程式の解1の重複度2だけxをかけて、 y1=ax^3e^xとおくと y1'=a(x^3*e^x+3x^2*e^x),y1''=a(x^3*e^x+6x^2*e^x+6xe^x) これらを与方程式に代入すると6axe^x=xe^xよりa=1/6 よってy=e^x(Ax+B+x^3/6) とあるのですが、上文にある重複度っていうのがわかりません。 例えば、特性方程式の解が2±i(虚数解)で、これより 補助方程式の一般解はy=e^(2x)(Asinx+Bcosx) 与方程式の右辺がe^(2x)のときの重複度はどうやって考えれば いいでしょうか?

  • 微分方程式

    dy/dx-2*x^2*e^x*y+e^x*y^2=2*x-x^4*e^x に対しての次の問のとき方について教えてください (1)x^a が微分方程式の解となるように実数aを求めよ (2) a を(1)で求めたものとする。y=x^a+zを微分方程式に代入して,zの満たす微分方程式を求めよ。 (3)(2)で求めたzの微分方程式を解いて,もとの微分方程式の解yを求めよ (1)についてはa=2という答えだと思うのですが,(2)以降の解き方の手順がわかりません。解法がわかるのであればよろしくおねがいします。

  • 微分方程式の問題

    問題 x^2 * d^2y/dx^2 - 3x * dy/dx + 3y = 0 この微分方程式に y = f(x) * x^3 を代入して、基本解を求めよ。 代入すると x * d^2f(x)/dx^2 +3df(x)/dx = 0 になりました。 どなたかここからの解答(解き方)をご教授ください

  • 微分方程式の問題です。

    微分方程式の逆演算子の問題なんですが、 (D^2+D+1)y=x^3-2 という問題なんですが、まず特性方程式でひとつの特殊解をみつけて 次にもうひとつの特殊解を見つけるわけなんですが y=(x^2-2)/(D^2+D+1) と変形したんですが因数分解も出来なくどうすればいいのかわかりません。 y=e^(-x/2) (Asin(3^1/2*x /2)+Bcos(3^1/2*x /2))+x^3-3x^2+4 の答えになります。

  • 線形微分方程式について

    参考書にこのような問題があります、 カッコ内の一組の関数は、与えられた微分方程式の基本解であることをしめせ、(解の確認は直接代入、一次独立性はロンスキアンを用いよ) x^2y''-2xy'+(x^2+2)y=0 [xcosx,xsinx] この問題はまずどのようにして解いていけばよいかわかりません、参考書をみても。 おしえてください。

  • 微分方程式について

    以下の微分方程式の問題が分かりません。お願いします。 ◎次の同次微分方程式を、与えられた初期値の下で解け。 (d^2 x)/(d t^2)-2(dx)/(dt)-3x=0,x(0)=3,x^(1)(0)=1 という問題です。 x(t)=cε^(pt)を上記の式の代入して、 (p^2-2p-3)cε^(pt)=0 特性方程式は、H(p)=p^2-2p-3=(p+1)(p-3) になり、 特性根は、p0=-1,p1=3になる x(t)=c0 ε^(-t)+c1 ε^(3t) x(t)’=-c0 ε^(-t)+3c1 ε^(3t) になります。ここで、x(0)とx(0)’を求めるのですがここからがわかりません。 x(0)=c0+c1=3,x(0)’=-c0+3c1=1 と立てれるそうですが、それぞれの左辺は、分かりますが、右辺の3と1の意味が分かりません。なぜ、こうなりますか。 あと、ここからどうしたらよいですが。 お教えください。

  • 非同次微分方程式の特殊解について

    非同次微分方程式の特殊解は Q(x)=Ax^n あるいは Q(x)=Ax^n + Bx^(n+1) +…(n次多項式の場合) ・特性方程式の解に0が無ければ、η(x)=kx^n + lx^(n+1) +…+m ・特性方程式が単解0をもてば、  η(x)=x(kx^n + lx^(n+1) +…+m) ・特性方程式が重解0をもてば… などη(x)の置き方がいろいろありますよね。 他にも、三角関数の時や指数関数の時など。 こういった特殊解は、覚え方などあるのでしょうか? 自力で丸覚えするしかないのでしょうか? 解き方は分かるのに、特殊解をη(x)=…なんだったっけかな…と思うことがしばしばあります。 覚え方があるのなら教えて下さい。