• ベストアンサー

ラグランジュの未定乗数法を利用する3次元の極値問題

下の問題の解き方を教えてください よろしくお願いします 半径Rの球面上の2点A,Bを両端とする曲面のうち長さが最短となるものを求めよ ただし、計算は直交座標(デカルト座標)を用い、 x^2+y^2+z^2=R^2 を束縛条件としてラグランジュの未定乗数法を利用すること

  • tyuii
  • お礼率100% (1/1)

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1
tyuii
質問者

お礼

教えていただいたページを探したら、同じ問題と回答が載っていました!! とても分かりやすくて助かります 本当にありがとうございました

関連するQ&A

  • ラグランジュの未定乗数法!!

    x^2+y^2+z^2=1 である時、 1、関数x-y-zの最大値 2、関数x-y-zの最小値 をラグランジュの未定乗数法で求めよ。 以上の回答、解説どなたかお分かりになりませんでしょうか??? よろしくおねがいいたします!!!

  • ラグランジュの未定乗数を二つ使う場合

    ラグランジュの未定乗数を二つ使う場合 V=xyzの極小値を、x+y+Z=1、xy+yz+zx=3の条件下で解く問題がわかりません。 ラグランジュ乗数を二つ使って解けと言われたのですが。 式は立てることができても、答えが出ません。 どなたかお助けください。 お願いします。

  • ラグランジュの未定乗数を二つ使う場合

    ラグランジュの未定乗数を二つ使う場合 V=xyzの極小値を、x+y+z=3、xy+yz+zx=1の条件下で解く問題がわかりません。 ラグランジュ乗数を二つ使って解けと言われたのですが。 式は立てることができても、答えが出ません。 どなたかお助けください。 お願いします。

  • ラグランジュの未定乗数法

    問題の(1)について ラグランジュの未定乗数法から y+1=2λx x+1=2λy x^2+y^2=1 の連立方程式を解きたいのですが解けません 気になりすぎて夜も眠れないです どうかお願い致します

  • ラグランジュの未定乗数法

    x^2+y^2=1のときにx^3-x+y^2の最大、最小値を求めよという問題です。 ラグランジュの未定乗数法を用いて解こうとしているのですが、λ,x,yについて解が定めきれずに困っています。 つまり、x^2+y^2-1=0 3x^2-1-2λx=0 2y-2λy=0 の3式を解こうとしているのですが、うまくいきません。 ご指南宜しくお願いいたします。

  • ラグランジュの未定乗数法を使う問題

    x+y+z=1 のもとで、f(x)=(x^a)*(y^b)*(z^c)の最大値を求めよ。 なお、a,b,cは正の実数 という問題なのですが、ラグランジュの未定乗数法を用いてこれを解く場合、 L(x,y,z)=x^a*y^b*z^c+λ(x+y+z) とおいてLをx,y,zについてそれぞれ偏微分し、それがゼロとなる方程式を立てればよい、ということだったと思いますが、計算してみると ay=bx az=cx bz=cy となりました。この辺からよくわからないのですが、f(x)の最大値を求めるにはどうすればよいのでしょうか?

  • ラグランジュの未定乗数法について

    こんにちは、ラグランジュ未定乗数法を使う問題で分からないものがあったので質問させていただきます。 x^2+y^2+z^2=1 の条件の時、f(x,y,z)=5x^2+3y^2+4z^2+4xz+4yzの最大値と最小値を求めよ という問題です。 fx/gx=fy/gy=fz/gz=λで表せるので、 10x+4z=2xλ 6y+4z=2yλ 8z+4x+4y=2zλ の3つの式が得られたのですが、ここからどうすればいいか分かりません。 直接x,y,zの組み合わせを見つけるのは難しそうなので、まずそれぞれの変数をλの式で表して条件式に代入し、λの値を求めた後組み合わせを見つけようと思いました。 しかし、上の3式からそれぞれの変数をλで表せません。なにか他のやりかたがあるのでしょうか。 よろしくお願いします。

  • ラグランジュの未定乗数法を用いる問題

    ラグランジュの未定乗数法を用いる問題がわかりません。 条件x^2+2y^2=1, f(x,y)=xy この式でf(x,y)が極値をとる候補点を全て求め、そこでのf(x,y)の値をそれぞれ求めよ。ただし、その値が極値となることを実際に確かめる必要はない。 λ=±√2/4となったのですが、それ以降がわかりません。ご教授くださると光栄です。

  • ラグランジュの未定乗数法

    いつも有り難く利用させていただいております。 今回は、ラグランジュの未定乗数法について少々お聞きしたいのですが、 http://www004.upp.so-net.ne.jp/s_honma/derivative/lagrange.htm のラグランジュの未定乗数法の説明のところで、("A_x"でAをxで偏微分することを意味している) 制約条件をG( x , y , z )=0 、( a , b , c )で、極致を求めたい関数をF(x , y , z )としておくと、  このとき、G( x , y , z )=0 から、z が x , y の関数になっているとすると、関数F は x , y の関数になるので、( a , b , c )において、       F_x+F_z・z_x=0 、 F_y+F_z・z_y=0 が成り立つ。  ここで、z_x 、z_y は、次の式により与えられる。       G_x+G_z・z_x=0 、 G_y+G_z・z_y=0 そこで、( a , b , c )における -F_z/G_z の値を、λ とおくと、 F_z+λG_z=0 が成り立ち、 さらに、F_x+λG_x=0 、 F_y+λG_y=0 が成り立つ。  したがって、4つの式 G=0 、F_x+λG_x=0 、F_y+λG_y=0 、F_z+λG_z=0 を解くことにより、極値を与える候補の点( a , b , c )が求められる。 と、記載されているのですが、 G( x , y , z )=0 から、z が x , y の関数になっているとすると、関数F はx , y の関数になるので、( a , b , c )において、       F_x+F_z・z_x=0 、 F_y+F_z・z_y=0 が成り立つ。  ここで、z_x 、z_y は、次の式により与えられる。       G_x+G_z・z_x=0 、 G_y+G_z・z_y=0 の部分の、 F_x+F_z・z_x=0 、 F_y+F_z・z_y=0 と、 G_x+G_z・z_x=0 、 G_y+G_z・z_y=0 の式はどのようにして出てきているのでしょうか?

  • ラグランジュの乗数法での極値の求め方

    宜しくお願い致します。 [問]ラグランジュの乗数法をを使って、x^2+y^2=1の条件下でf(x,y)=xyの極値を調べよ。 [解] 『定理(ラグランジュの乗数)g(x,y)=0のもとに、f(x,y)の極値を考える。この条件付極値を与える点(a,b)がg(x,y)=0の特異点でなければ(a,b)は連立方程式 g(x,y)=0 ∂/∂x{f(x,y)+λg(x,y)}=0 ∂/∂y{f(x,y)+λg(x,y)}=0 の解の中から得られる。』 そして、 『f(x,y)の特異点とは 「fx∈Rでない または fy∈Rでない」か「fx=fy=0」なる点』 なのでこれを利用するとまず連立方程式は (∂/∂x{f(x,y)+λg(x,y)}=)y+2λx=0…(1) (∂/∂y{f(x,y)+λg(x,y)}=)x+2λy=0…(2) x^2+y^2=1…(3) となり、(1)-(2)から (x-y)(1-2λ)=0 λ=1/2の時はxとyの値が定まらないのでλ≠1/2とすると x=yで(3)よりx=y=±1/√2 (複合同順) しかし、解答には (1/√2,1/√2) (1/√2,-1/√2) (-1/√2,1/√2) (-1/√2,-1/√2) の4つになっています。 何処らへんから間違っているのでしょうか???