• ベストアンサー
  • 困ってます

微分について質問です。

数学IIIでの質問です。 次の式からdy/dxをx及びyを用いて表せ xy=10 という問題なのですが自分は最初、 y=10/xとし dy/dx=10・(-1)/x*2 dy/dx=-10/x*2 これが答えだと思ったのですが回答は 1・y+x・dy/dx=0 dy/dx=-y/x となっています。 これは積の微分公式を使ったということなんですが xyを微分するときでも使えるんですか? それとこのxyを微分するとyになると思うんですがなぜ積の微分公式を使うのですか? 回答お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数73
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

>これは積の微分公式を使ったということなんですが xyを微分するときでも使えるんですか? それとこのxyを微分するとyになると思うんですがなぜ積の微分公式を使うのですか? 積の微分公式を使っています。xの関数f(x),g(x)の積のP(x)の微分は P(x)=f(x)g(x) dP(x)/dx=f'(x)g(x)+f(x)g'(x)  (1) です。 ご質問のyはまさにxの関数(y=10/x) (1)において P(x)=xy f(x)=x g(x)=Y とすると 右辺は y+xy' 右辺は定数の微分なので0 よって y+xy'=0 QED

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど! 確かにyはxの関数ですね! このxyのyがなぜxの関数として積の微分公式に当てはまるのか 理解できました!回答ありがとうございます。

関連するQ&A

  • 数III 微分の問題

    xy=2について、dy/dxをx,yを用いて表せ。という問題なのですが <自分の答え> y≠0のとき、 x=2/y この両辺をxで微分すると 1=(d/dx)(2/y) 1=(dy/dx)(-2/y^2) ∴dy/dx=-(y^2/2) <模範解答> 両辺をxで微分すると y+(dy/dx)x=0 よって、x≠0のとき dy/dx=-(y/x) というように解答が違います。 でもxy=2から、x≠0のときy=2/xであることは明らかですから、 -(y^2/2)=-{y(2/x)/2}=-(y/x) となりますよね? この場合<自分の答え>も正解ですか?

  • 微分についての質問です

    x^2+y^2=1について(d^2)y/dx^2をもとめよ  なんですが 解答は 2x+2ydy/dx=0 dy/dx=-x/y さらに両辺をxについて微分すると (d^2)y/dx^2=(xy'-x'y)/y^2=-1/y^3 だったんですが 私はdy/dx=-x/y さらに両辺をxについて微分すると (d/dx)・(dy/dx)=(d/dx)-x/y で(d^2)y/dx^2=-1/yだと思うんですが  yについて微分しないと(xy'-x'y)/y^2にならないとおもうんですがどうしてこのようになるんでしょうか?

  • 逆関数の微分 問題

    逆関数の微分 問題 1.x=(y^2-1)/(y^2+1)のとき、dy/dxを求めよ。  dy/dx=1/(dx/dy)である。商の微分より、  dx/dy=(4y)/(y^2+1)^2  dy/dx=(y^2+1)^2/(4y) 2.y=e^xyのとき、dy/dxを求めよ。  logy=xy→x=logy/y  dy/dx=1/(dx/dy)である。商の微分より、  dx/dy=(1-logy)/y^2  dy/dx=y^2/(1-logy) 答えは合っているでしょうか? ご回答よろしくお願い致します。

その他の回答 (1)

  • 回答No.1
  • asuncion
  • ベストアンサー率32% (1726/5355)

>dy/dx=-10/x*2 >これが答えだと思った >dy/dxをx及びyを用いて表せ 「xおよびyを」用いて表わしていないため、不正解なのではないでしょうか。 xy=10をy=10/xと変形してxについての関数とみなしてxで微分すると、 >dy/dx=-10/x*2 間違いなくこうなりますので、後は、10/x=yを代入すれば dy/dx=-y/x になりますね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

そういう考え方もあるんですね! 回答ありがとうございました。

関連するQ&A

  • 微分と偏微分の問題です

    次の問題が与えられています。 x=a*sin^3t , y=a*cos^3tのとき、dy/dx,d^2y/dx^2、∂y/∂x,∂^2y/∂x^2を求めよ。 まず、微分の方なのですが、xとyをtで微分し、そこから式を進めて、 dy/dx =-1/(sin^2 t) が求まりました。 そして、 d^2y/dx^2 = - 1/3a*cost が求まりました。 これについて、まず、本当に正しいのかを添削してください。 間違っていましたら、ご解説をお願いします。 そして、偏微分についてですが、これはどのように回答していのが正しいのでしょうか。 「偏微分は微分と同じ答えになるので……」と、簡単に書いてしまって良いモノか悩んでいます。 以上、よろしくお願いします。

  • yをxで微分するときの微分の仕方の違いがよくわかりません。

    (1)xy=2の両辺をxで微分すると x'y+xy'=0で 1*y+x*dy/dx=0になるのはとりあえず理解しました。 ですが、 (2)x^2/9+y^2/4=1の両辺をxで微分すると 2x/9+2yy'/4=0となるのがよくわかりません (1)の1*y+x*dy/dx=0で yをxで微分すればdy/dxとなるはずなのに、 なせ(2)では2yy'/4となっているのでしょうか? ここは2ydy/dxとはなぜならないのでしょうか? お願いします。

  • 同次形高階微分方程式について

    同次形高階微分方程式について 同次形高階微分方程式の単元を読んでいますと、「y,dy,d2y について同次の場合」とか「x,dx について同次の場合」とあるのですが、式を見てy,dy,d2y について同次なのか、x,dx について同次なのか判断できません。具体的には、 xy(d2y/dx2)-x(dy/dx)^2+y(dy/dx)=0 はy,dy,d2y について2次の同次形で、x^2(d2y/dx2)+x(dy/dx)+y=0 はx,dx について0次の同次形 であるとありますが、どのように判断すればよろしいのでしょうか?

  • 変数変換と微分

    よろしくお願いします。ある本で次の図と記述があります。 ※vxのxはvの右下に付く添え字です。 Fxx=μ(dvx/dy)+μ(dvy/dx) これを以下の式でxy座標からXY座標に変換 X=(x+y)/√2,Y=(&#65293;x+y)/√2 上記の両式をt,x,yで微分すると VX=(dX/dt)=(vx+vy)/√2 VY=(dY/dt)=(&#65293;vx+vy)/√2 (∂X/∂x)=1/√2,(∂X/∂y)=1/√2,(∂Y/∂x)=&#65293;1/√2,(∂Y/∂x)=1/√2 が得られます。 さらに整理して vx=(VX&#65293;VY)/√2,vy=(VX+VY)/√2 これらを使って,一番最初の式に出てくる微分(dvx/dy)と(dvy/dx)を変数X,Yによる微分に変数変換します。 (dvx/dy)=(∂X/∂y)(∂vx/∂X)+(∂Y/∂y)(∂vx/∂Y) (dvy/dx)=(∂X/∂x)(∂vy/∂X)+(∂Y/∂x)(∂vy/∂Y) ここで質問です。  上記の式の最後の2行 つまり, (dvx/dy)=(∂X/∂y)(∂vx/∂X)+(∂Y/∂y)(∂vx/∂Y) (dvy/dx)=(∂X/∂x)(∂vy/∂X)+(∂Y/∂x)(∂vy/∂Y)  この式が出てきた経緯が分かりません。(dvxをdyで微分するとなぜ右辺のようになるのかが分かりません。同様にdvyをdxで微分するとなぜ右辺のようになるのかが分かりません。)  どなたか解説をお願いできないでしょうか。

  • 微分の問題(早急に)

    問題.次の関数の微分dy/dxを求めなさい  xy=1

  • 数学 微分方程式

    次の微分方程式を解け。 (1) dy/dx=ay(a≠0) (2) dy/dx=(y-1)/xy (3) (1-x^2)dy/dx=x(y^2+1) という問題が分かりません。解説お願いします。

  • 微分の記号

    微積(数学III学習中です) d/dx と dy/dx d/dy と dx/dy の違いが分かりません。 具体的に、 問題 y^3=x^2 について   dy/dxをx,yの式で表すとき 答え・・・ (d/dx)y^3=2x   ・・・・・・・・・・・・dのみ?   (dy/dx)(d/dy)y^3=2x ・・・・・・・・・・・・いきなりdy/dx? 3y^2(dy/dx)=2x ゆえに(dy/dx)=2x/3y^2 でパニックになりました。

  • 微分の基本的な質問

    今微分について疑問に思ったのですが、 dy/dxって分数みたいに掛けたり割ったりすることが出来るんでしょうか? 例えば dy/dx=x^3/y だとすると両辺にdxをかけたりして ydy=x^3 dx になって ydy-x^3 dx=0 となり完全微分となり、yについて解くみたいなやり方がありますよね? 後、よく教科書で、dy/dt*dt/dx=dy/dxみたいな感じになってるんですが、 例えば y=x^2 と y=t^5 があったとして、 dy/dx=2x dy/dt=t^5 ですよね? dy/dtを分数みたいに(dy/dt)^-1にして dt/dy=(t^5)^-1 で dy/dx*dt/dy をするとdyが消えますから dt/dx=(2x)*(t^5)^-1 =2x/(t^5) となります でも、元の式に帰ると y=x^2 y=t^5 ですから t^5=x^2になって dt/dx=2x/(t^5)=2x/(x^2)=2/x になります。 しかし、最初の式で t=(x^2)^(1/5) というようにしてから微分すると dt/dx=2/5(x^-3/5) になります。 ということはdx/dyを分数として考えると矛盾が起こるんじゃないでしょうか? ということは教科書は間違っているんでしょうか?;; 誰か助けてください!!

  • 非線形微分方程式の問題について

    微分方程式の問題について質問させていただきます。 [問題] 以下の微分方程式を解け。 dy/dx(dy/dx-y)=x(x-y) ただし、x=0のときy=0とする。 非線形なのでp=dy/dxとおいて、解いたのですが、解として (1) y = 1 + x - e^-x (2) y = (1/2)x^2 の二つが出てきました。しかし、(1)の方は微分して与式に代入しても、 式を満たさなかったのでですが、これらの解は合っているでしょうか? おそらく、(1)は間違っていると思うのですが、p=dy/dxとおいて解くと、なぜかこのような解が出てきてしまいました。 回答よろしくお願いいたします。

  • 完全微分方程式の問題の解き方

    完全微分方程式 次の完全微分方程式を解けと言う問題で (x dx + y dy)/(√(1+x^2+y^2) = 0 ・・・・・(1) これを P(x)dx + Q(y)dy = 0が完全微分方程式なら一般解は ∫P(x)dx - ∫{(∂/∂y)(∫P(x)dx) - Q(y)}dy = C を使おうと、式(1)を (x / (√(1+x^2+y^2))dx + (y / (√(1+x^2+y^2))dy=0 として解こうかと思ったんですが、 途中の計算で式が複雑になりすぎて行き詰ってしまいました。 公式に当てはめる前にもっと式を変形しないと駄目なんでしょうか? もっと他の方法があるんでしょうか? アドバイスお願いします。