• ベストアンサー

凸集合

次の問題を教えて下さい。基本的ですいません。 よろしくお願いします。 ---------------------------------- 以下の集合が凸集合であることを示せ A={ x^2+y^2≦r^2 }∈R^2 (rは定数) B={ x^2+y^2≦z } ∈R^3 ----------------------------------

質問者が選んだベストアンサー

  • ベストアンサー
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.2

(1) 0≦r∈R A={(x,y)∈R^2|x^2+y^2≦r^2} {(a,b),(c,d)}⊂A 0≦t≦1 (x,y)=(1-t)(a,b)+t(c,d) とすると a^2+b^2≦r^2 c^2+d^2≦r^2 (a^2+b^2)(c^2+d^2)-(ac+bd)^2=(ad-bc)^2≧0 ↓ x^2+y^2 ={(1-t)a+tc}^2+{(1-t)b+td}^2 =(1-t)^2(a^2+b^2)+2(1-t)t(ac+bd)+t^2(c^2+d^2) ≦(1-t)^2(a^2+b^2)+2(1-t)t√{(a^2+b^2)(c^2+d^2)}+t^2(c^2+d^2) ={(1-t)√(a^2+b^2)+t√(c^2+d^2)}^2 ≦r^2 (2) B={(x,y,z)∈R^3|x^2+y^2≦z} (a,b,c)∈R^3 (d,e,f)∈R^3 0≦t≦1 (x,y,z)=(1-t)(a,b,c)+t(d,e,f) とすると a^2+b^2≦c d^2+e^2≦f (a^2+b^2)(d^2+e^2)-(ad+be)^2=(ae-bd)^2≧0 ↓ x^2+y^2 ={(1-t)a+td}^2+{(1-t)b+te}^2 =(1-t)^2(a^2+b^2)+2(1-t)t(ad+be)+t^2(d^2+e^2) ≦(1-t)^2(a^2+b^2)+2(1-t)t√{(a^2+b^2)(d^2+e^2)}+t^2(d^2+e^2) ≦c(1-t)^2+2(1-t)t√(cf)+ft^2 =(1-t)c+tf-t(1-t)(√c-√f)^2 ≦(1-t)c+tf =z

amaishi
質問者

お礼

お礼が遅れて申し訳ありません。 丁寧な回答をありがとうございました。 お陰様で理解することができました。

その他の回答 (2)

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.3

凸集合の定義通り、集合Aの任意の2点(a,b), (c,d)について、両者を結ぶ線分上の点(a+ct, b+dt)(0≦t≦1) が全てAの要素であること   ∀a∀b∀c∀d∀t((a,b)∈A ∧ (d,c)∈A ∧ 0≦t≦1 ⇒ (a+ct, b+dt)∈A) を証明すれば良いのです。それをキッチリやって下さってるのがANo.2。

amaishi
質問者

お礼

お礼が遅れてしまって申し訳ありません。 解決しました。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

何が分からないのかが分かりません.

amaishi
質問者

補足

凸集合の定義は知っていますが、問の集合について どのように示せばいいかわからないのです。 証明を実際にして頂けると幸いです。

関連するQ&A

  • 数学の、凸集合の問題を教えて下さい。

    次の6つの集合を、凸かどうか調べよという問題です。 図書館で本を調べたりしたのですが、定義とかだけで具体的な問題が載っておらずよく分かりません。 分かるやつだけでも全然構いません。お願いいたします。 (1)集合S={(x,y,z)∈R^3:x^2+y^2≦z} (2)集合S={(x,y)∈R^2:1≦x≦2,y=3} (3)集合S={(x,y,z)∈R^3:x+y≦3,x+y+z≦5,0≦x,y,z} (4)集合S={(x,y,z)∈R^3:x+y=3,x+y+z≦6} (5)集合S={(x,y,z)∈R^3:x^2+y^2+z^2≦4,x+y=1} (6)集合S={(x,y)∈R^2:x^3≦y,0≦x} お願いします

  • 凸集合での命題を証明したいのですが…

    実数体Rに於いて,A,B⊂R^n を凸集合とする時、 (1) もし、AとBが閉集合ならA+B:={x+y;x∈A,y∈B}は閉集合とは限らない。 (2) もし、AがコンパクトでBが閉集合ならA+Bは閉集合。 という命題を証明したいのですが滞ってます。 凸集合の定義は 「集合Sについて任意の2つのベクトル x,y∈S と正の実数s (0≦s≦1) について, sx+(1-s)y∈S が成立するとき,Sは凸集合であるという」 閉集合の定義は 「{Π[1..n][ai,bi];ai,bi∈R(i=1,2,…,n)}の元を閉集合という」 コンパクトの定義は 「集合YをX(⊂R^n)の開被覆とする時、Yの有限個の開集合でXを覆える。」 (1)の反例はどのようなものが挙げれるでしょうか? そして、(2)はどのようにして示せますでしょうか?

  • 凸集合の問題の解き方

    xy平面で以下の表す図形は凸集合かどうか。ただし、cをある定数とする。 {(x,y)|x^2+y^2≦6} という問題です。例題が答えなくて困ってます… 初心者でもわかるように教えてもらえれば幸いです。 知りたいこと:この問題の答えというより、やり方、アプローチそのもの

  • ∀B⊂R^nに対し,Bを含む最小の凸集合Aが存在の証明

    [問]Rは実数体で∀B⊂R^nに対し,Bを含む最小の凸集合Aが存在する事を示せ。 [証] Bを含む凸集合の共通部分A:=∩[C∈{C;B⊂C:凸集合}]C を考えたのですが ∀x,y∈A,∃C∈{C;B⊂C:凸集合} such that x,y∈C. 所が∀λ∈[0,1],λx+(1-λ)y∈Cは言えるが λx+(1-λ)y∈Aとは必ずしも言えないと思います。 どうすればλx+(1-λ)y∈Aが言えますでしょうか?

  • 凸集合の証明です。

    (1) A1,A2,A3,…,AmをR上のベクトル空間Lにおける凸集合とする。このとき ΣAi={x|x=Σai, ai∈Ai, i=1,2,…m} もまた凸集合である。 (2) Ai, i∈Iをすべてベクトル空間Lの凸部分集合とするとき∩Aiも凸集合である。 (1)(2)を証明せよ。 というものなのですが分からなくて困ってます。 宜しくお願いします。

  • Xi(i∈I)が凸集合⇒∩[i∈I]Xiも凸集合

    Rを実数体とする。 R^n⊃Xi(i∈I)が凸集合⇒∩[i∈I]Xiも凸集合 を示したいのですが ∀λ∈[0,1], x,y∈∩[i∈I]Xi, λx+(1-λ)y=… からどのようにして ∈∩[i∈I]Xiに辿り着けますでしょうか?

  • A,B,C⊂R^n,A≠φ,C:閉集合かつ凸集合とする時,A+B⊂A+C⇒B⊂C

    [問]A,B,C⊂R^n,A≠φ,C:閉集合かつ凸集合とする時、 A+B⊂A+C⇒B⊂C を示せ。 [証] 先ず C:閉集合かつ凸集合 から ∀x∈C,0<∀ε∈R,近傍Uε(x)⊂R^n\C 且つ ∀x,y∈C,λx+(1-λ)y∈C(λ∈[0,1]) 且つ ∀a+b∈A+Bならばa+b∈A+C がいえますよね。 そこで ∀b∈Bに対してb∈Cをどうやって示せるのでしょうか?

  • 集合論の問題です。

    集合論の問題です。 同値関係が分かるようになりたいので、 よろしくお願いします。 R^2の関係~を以下で定義。 (x,y), (x',y')∈R^2に対して、 x-x'∈Z and y-y'∈Z なるとき、 (x,y)~(x',y')と表す。 この同値関係による同値類すべての集合をAと表し、 (x,y)∈R^2の同値類を[x,y]とあらわす。 a,b,c,d∈Zのとき、 f( [x,y] ) = [ax+by, cx+dy] ([x,y]∈A) によってf:A→Aが well-definedに定義できることを示せ。

  • 凸関数の問題

    凸集合と凸関数に関する問題です。 問題 x,y∈R^nの内積を<x,y>=x´yで定義する。R^n上の凸集合Cに関して 関数fを                 (ただし、x´はxの転置行列)       f(x)=sup{<x,y>|y∈C} とおく。 (1)fが凸関数であることを示せ  fのエピグラフepi fがR^(n+1)上の凸集合であるとき、fが凸関数  であることから考えようとしたのですが解けません。  ちなみに、fのエピグラフepi fの定義は    epi f={(x,μ)|x∈S,μ∈R,μ≧f(x)} fは、その領域がS∈R^nであり、値は実数か±∞をとるような関数 (2)n=1としたとき、C=[0,1]の場合fはどうなるか?  (1)をどう生かしていけばいいのかわからない。 (3)n=2として、C={(y[1],y[2]|y[1]+y[2]≦1、y[1],y[2]≧0}    のとき、fの等高線をR^2上ではどうなるか?  Cの領域の図示はしましたが、これをどうするのか扱いが理解できない。 以上なのですが、何とか理解したいのでよろしくお願いします。  

  • 凸関数

    R^nにあるx,yの内積を<x,y>=x´yとする。 ここでR^nの凸集合Cについて 関数f=sup{<x,y>|y∈C} とすると fが凸関数であることを凸関数の定義を使っても できません。 解けるにはどうやればいいのでしょうか?