• ベストアンサー

0を無限個足すと・・・

nを自然数として、0をn個足しても0ですが、無限個足しても0でしょうか。 当たり前、な気もしますが・・・。 有限個の数列に、続く数列をすべて0とする議論があり、ふと疑問に感じました。 ご教授お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.6

すでに指摘されているように 「無限個を足す」 ということをどのように定義するか?という一点にかかります. そこが理解できないで延々と続く議論が多いですけどねー 普通の数学では「無限個足す」というのは 有限個まで足してそれの極限をとる という意味ですので, すでに回答があるように その意味では「0を無限個足す」と「0」です. 決して,0 x ∞ = 0ではないです. 同じ数の足し算が掛け算に書き換えられるというのは あくまでも有限個の世界だけで定義されています. 有限の類推を無限に無造作に適用してはいけません. それで >有限個の数列に、続く数列をすべて0とする議論があり、ふと疑問に感じました。 これは実はきっちり定義されます. そもそも数列ってのは 自然数全体からなる集合N(の部分集合)から,何らかの集合への写像です. 分かりにくいなら,例えば 自然数全体からなる集合N(の部分集合)から,実数への関数 とみてもいいです. こうみた場合,そもそも有限数列というのは Nの有限部分集合からの写像ということになり, 残りを全部0にするというのは 定義されていない部分では0とするというように拡張しているだけです. 気分としては f(x) = 1 (xが自然数) f(x) = 0 (xが自然数ではない) のように場合わけして関数を定義するようなものです.

noname#184996
質問者

お礼

数列とは何ぞや、というところがストンと胸におちました。 ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (5)

  • misawajp
  • ベストアンサー率24% (918/3743)
回答No.5

0の定義から言えば 0です

全文を見る
すると、全ての回答が全文表示されます。
noname#175206
noname#175206
回答No.4

 証明方法はいろいろあるでしょうけど、0を無限個足しても0ですね(たぶん^^;)。  ただし、無限回足した結果が得られるとせずに、無限回という「極限」を考えた時の値としておいたほうがいいでしょう。  たとえば、  (1/2)^1+(1/2)^2+…+(1/2)^n(+…=1) の総和でn→∞とした無限級数って1ですけど、無限回の手続きの結果というものを認めるかどうかは議論があるみたいです。  たとえば「無限回足した後に」として良いとする人もいれば、「有限回の手続きをいくらでも増やした場合に」までしか認めない人もいるようです。  おそらく、他の考え方もあったりするんでしょうけど、よく知りません。すみません。  なので私個人は、「無限回足し終えた」というような言い方は避けるようにしてます。  それを認めた上で、それの上記各項の1/m(m≠0)を考えると、  (1/m)(1/2)^1+(1/m)(1/2)^2+…+(1/m)(1/2)^n+…=1/m は、どういう無限回の足し算なのかに関わらず成り立つので、今度はm→∞とすれば0になる、って感じでOKかと思います。  しかし、これだと極限値のさらに極限値ということになって、どうも野暮ったいので、たぶん別のすっきりした説明があったりするんだと思います。

全文を見る
すると、全ての回答が全文表示されます。
  • B-juggler
  • ベストアンサー率30% (488/1596)
回答No.3

お邪魔します。代数屋です(元ですがね^^;) やはり「無限」と言うのは扱いにくい! の一言でしょうかね。。。。 No.1さんとおなじく、極限を持ってくる必要があるのと 定義を考えておかなければならなくなります。(と、思います) おそらくですが、この場合、0×∞ = 0 と言う式は ちょっとうかつには使えない気がします。  #ダイジョウブだと思いますが、別に回答者同士で争うつもりなどありません。 (=^. .^=) m(_ _)m (=^. .^=)

全文を見る
すると、全ての回答が全文表示されます。
  • cbm51901
  • ベストアンサー率67% (2671/3943)
回答No.2

別の見方をすれば、 0 × n  (n = ∞) ということですよね。 ゼロに何を掛けてもゼロですから、0 です。

全文を見る
すると、全ての回答が全文表示されます。
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「無限個足す」という操作をきちんと定義しなきゃならないんだけど, 何も言わなければ普通 「N個足す」という操作の N→∞ における極限 とするだろうから, 「0 を無限個足し」ても 0.

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 無限順列に対して無限組合せを考えると

    Aを要素が3つの有限集合{x,y,z}とします。Nを自然数の集合{1,2,3,4,…}とします。 写像:A→Nを考えます。 これは幾何学的には空間N^3を表しています。 また、解析的には、項数が3の自然数の数列を表してます。 例えばピタゴラス数(x^2+y^2=z^2を満たす自然数x,y,z)を考えるといった実用性があります。 以上のことを、組合せで考えます。 例えばピタゴラス数では、x^2+y^2=z^2を満たす自然数x,y,zに、同じ組合せを同一視したり、x<y<z、もしくは、x≦y≦zといった制限を与えることになります。 これはごく普通の考えと思います。 次に、Nを自然数の集合{1,2,3,4,…}とします。Aを要素が3つの有限集合{0,1,2}とします。 写像:N→Aを考えます。 これは組合せ論的には、3つの要素を無限個並べた順列を表しています。 また、解析的には、各項が0,1,2の無限数列を表してます。 例えば0≦x≦1の実数xの3進法表示(ただし、0.210222…=0.211000…といったような同一視をする)を考えるといった実用性があります。 以上のことを、(重複)組合せで考えてみると、3種類の数字の数列に対して、イレカエをしても同じになる並べ方を同一視することになります。 統計学的には、無限個並べた3種類の数字の度数分布を考えることになります。 絵描きが無限の溝があるパレットに、3種類の絵の具からひとつずつ選び、一定量を出して並べていった後、かき混ぜたときの色を考えることになります。 これもまあ普通の考えと思うのですが、いわゆる「無限組合せ」は聞いたことありません。 なにか実用性はあるのでしょうか。数学の他の分野と関連はあるのでしょうか。 実数(√2)-1の3進法表示で、無限桁の数字0、1、2の「割合」はそれぞれ1/3、1/3、1/3なのでしょうか? 3種類の数字のなんらかの数列(無限順列)に対して、「無限組合せ」を考えたときに、何か面白いことはあるのでしょうか。

  • 可算無限についてお願いします

    集合Xが有限集合の時、 ∪{Xの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…|X|) は、Xのべき集合(2^X)と同じものですよね。 でも集合Xが有限集合ではなく、自然数の集合Nであった場合、 ∪{Nの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…) は可算無限であり、Nのべき集合(2^N)は非可算無限だと聞きましたが、 その違いはいったいなぜ起こるのですか? ※ 集合Y(≠∅ )に対し f:Y→2^Y となる全射が存在しないので、X=Nとすることで2^Nが非可算である事は理解しています。

  • 素数が無限個存在すること(エルデシュによる証明)

    素数が無限個存在することの証明について、 素数―wikipedia―によれば、エルデシュによる素数の逆数和の 発散性の証明は、素数が無限個存在することの証明にもなっているらしいです。 (証明において、素数が無限個存在することを用いていないため・・・?) http://ja.wikipedia.org/wiki/%E7%B4%A0%E6%95%B0 その証明は、 背理法による。 n 番目の素数を pn とする。 素数の逆数和が収束すると仮定すると、 任意の ε > 0 に対してある自然数 N が存在して、 1/pN+1 + 1/pN+2 + 1/pN+3 + ... < ε となる。 ★ いま、 ε = 1/2 としよう。任意の自然数 n に対して ・・・・・・・・ と説明されているのですが、 ★マークの部分がよくわかりません。 素数が無限個存在することを使用しているのでは!? もし有限なら、はるかに小さいεがとれないのではないでしょうか? どうかご教授ください。

  • 無限級数と無限数列の違いについて

    無限級数の和を求めよ、といった場合0に収束しない場合、「数列{An}が0に収束しないから、この無限等比級数は発散する」となりますよね。それは級数ってのは数列の初項からn項(n→∞)まで足した場合、第∞項にいっても0にならなければ永久に数が増えるために発散ということでしょうか。 数列というのは最後の項(∞)の数値はなにか?ということでしょうか。それで第∞項(←こういう言い方は正しいか分かりませんが・・・)がなんかの値に限りなく近づいていったらその値に収束。ということでしょうか。 つまり、例えば数列のn項(n→∞)が1に収束しても、級数は数列が収束したからって、1を永久に足し続けるから発散。ということでしょうか? ほかにも、数列が、増幅でも減衰でもない一定の振動をしている場合は、1-1+1-1+1・・・となって、合計が1,0,1,0,1,0・・・と0と1を振動してるだけなので級数も振動となるのでしょうか。 似たような問題で、+と-の値で増幅振動するのがあったんですけど,それは数列が0に収束しないから発散となっていました。1-2+4-8+16-32・・・ となり級数も振動すると思うのですが、解答に発散となっていたので、何かの値に収束しないものは(振動なども)すべてまとめて発散というのでしょうか? ずらずら質問というか確認のような感じで書いてしまいましたが・・・ 極限をやるうえで、意外と大事なところだと思うのでお願いします。

  • (-1)^nでnを無限大にとばしたとき

    大学受験用の参考書にて、 (-1)^n はn→∞において、 nが偶数のとき1 nが奇数のとき-1 となっています。 さらに、 2n乗では1 2n±1乗では-1 となっています。 そこで質問なのですが、以前に無限大というのは数ではなく量だと聞きました。それなのになぜ偶数や奇数があるのでしょうか。また2nや2n±1でわかれるということは、無限大というのは自然数なのですか?

  • 無限論?

    カントールは確か、無限にも大小があると言っていますよね。2の倍数と3の倍数(ここでは、2nや3nなどと表現してnは自然数とします。つまり2,4,6などの集合と3,6,9などの集合です)は2の倍数が大きいと考えても良いのでしょうか?

  • 無限級数及び、無限級数の定義とは?

    度々スイマセン。 宜しくお願いいたします。 無限級数の定義について考えております。 以下のような解釈で正しいでしょうか? 無限級数とは 数列{a_n} (つまり、a_1,a_2,a_3,…)からできる 数列{Σ(a_k,k=1,n)} (つまり、Σ(a_k,k=1,1),Σ(a_k,k=1,2),Σ(a_k,k=1,3)),…) のことである。 これを単に Σ(a_k,k=1,∞) と表す。 無限級数の値とは数列{Σ(a_k,k=1,n)}の極限値 lim(n→∞,Σ(a_k,k=1,n)) の事であり、 Σ(a_k,k=1,∞) と表す。 この値の事を無限級数の和とも言う。

  • 実数と自然数は同じ個数なのではないでしょうか?

    すべての自然数とすべての実数を1対1で対応させる(すべての実数を一列に並べる)方法を考えました。間違いがあれば教えてください。 *方法1*「後出し」は実数の専売特許にあらず まず、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるのだが、それは、異なる実数を無限に並べた「第一列」の「一番目」の実数を「1・1」とすると、 1→1・1 2→1・2 3→1・3 ・ ・ ・ と表すことができる。これはいわゆる「すべての自然数とすべての実数を1対1に対応させたと仮定したもの」であり、対角線論法によってこの表には存在しない実数を作れることから、仮定は間違い=「実数は自然数より多い」という結論になるのが従来の話である。しかしこれは、自然数を対応させる対象を「第一列」に限定したことによる間違った結論だ。 対角線上の数字のずらし方は、すべて一つずらす1111…の他に、1211…,1234…,2624…と無限にあるので、一つの対角線から、「第一列」には存在しない実数を無限に生み出すことができる。対角線論法によって生み出された無限の実数を並べた「第二列」に自然数を対応させることができなければ先の結論は正しいことになるが、そんなことは全然なく、「第二列」の「一番目」の実数を「2・1」とすると、 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ のように、始めの、自然数と「第一列」の対応を解消した後、あらためて自然数を、「第一列」と「第二列」に、交互に対応させればいいだけの話なのだ。で、これは、「第一列」と「第二列」を合わせて「新たな第一列」にした(=始めの状態にリセットした)ということであり、この「新たな第一列=N1」の対角線から、対角線論法によって「新たな第二列=N2」が生まれるので、そしたらまたそれまでの対応を解消して 1→N1・1 2→N2・1 3→N1・2 4→N2・2 5→N1・3 6→N2・3 ・ ・ ・ と、自然数を「新たな第一列」と「新たな第二列」に交互に対応させ、これを無限に繰り返せばいいのである。自然数を、「新たな第二列」の実数に、無限に対応させ続けることができるということは、すなわち両者の個数は同じということなのである。 それにしても、無限に生み出される「新たな第一列」と「新たな第二列」は合わせて「新たな第一列」にできるのに、なぜ始めから一列に並べることができないのか。 方法1を別の言い方でまとめると、まず 1→1・1 2→1・2 3→1・3 ・ ・ ・ のように、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるところから始めて、次に 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて、始めの、すべての自然数と、異なる実数を無限に並べたもの、とを対応させた状態 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ ↓ 1→1・1(1・1) 2→1・2(2・1) 3→1・3(1・2) 4→1・4(2・2) 5→1・5(1・3) 6→1・6(2・3) ・ ・ ・ にリセットして、そしたらまた 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて…とこれを無限に繰り返す、といった具合に説明することができる。 *方法2*実数を整列させる 方法1は「動的な対応」とでも言うべきものであり、できれば「静的な対応」が望ましいわけで、そのためには実数を整列させる必要があるのだが、以下のようなやり方ではだめなのか。 まず 1→0.1 2→0.2 ・ ・ ・ 9→0.9 10→0.01 11→0.11 12→0.21 ・ ・ ・ 99→0.99 100→0.001 101→0.101 102→0.201 ・ ・ ・ 9999→0.9999 10000→0.00001 10001→0.10001 10002→0.20001 ・ ・ ・ …835218→0.812538… …835219→0.912538… …835220→0.022538… ・ ・ ・ というように、すべての自然数と、0と1の間のすべての実数を、1対1に対応させる。右側が「0と1の間のすべての実数」であることに異論はあるだろうか。この列に存在しない(0と1の間の)実数は存在するのか。この列は、小数第一位の数字が1,2…9,0,1…9,0,1…となっているので、だいたいその値で推移しながら、実数が、0と1の間を無限に埋めていく形になっている。 例えば、小数点以下、一恒河沙の一恒河沙乗番目が2、一阿僧祇の一阿僧祇乗番目が3、一那由他の一那由他乗番目が4の 0.1…2…3…4… のような無理数について、この並びの途中までのものしかないとしたら、ではどこまでのものならあるのか。0.1…2か、0.1…2…3か、0.1…2…3…4か。実際には「途中まで」などということはなく、つまりこの列にこの無理数は存在し、この任意の無理数が存在するなら(0と1の間の)すべての無理数が存在するのである。で、この表は左右が対称的になっているから、右に無限小数が存在するなら左には無限桁の自然数が存在するのである。 有限桁の自然数を重複することなく無限に並べることができないのと同様に、有限小数を、重複することなく無限に並べることはできない。この列は0と1の間の実数を整列させたものであり、この列に存在しない(0と1の間の)実数は存在しない。 で、すべての実数を整列させると 0,0.1,0.2…0.9,0.01,0.11,0.21… 1,1.1,1.2…1.9,1.01,1.11,1.21… 2,2.1,2.2…2.9,2.01,2.11,2.21… ・ ・ ・ (0),-0.1,-0.2…-0.9,-0.01,-0.11… -1,-1.1,-1.2…-1.9,-1.01,-1.11… -2,-2.1,-2.2…-2.9,-2.01,-2.11… ・ ・ ・ となるので、すべての自然数とすべての実数を1対1に対応させると、 1→0 2→0.1 3→-0.1 4→1 5→-1 6→2 7→-2 8→1.1 9→-1.1 10→0.2 11→-0.2 12→0.3 13→-0.3 14→1.2 15→-1.2 16→2.1 17→-2.1 18→3 19→-3 ・ ・ ・ のようになる。 ところでそれでも従来の考えが正しい場合、循環小数と非循環小数の個数に差が出る本質的な原因、両者の違いは何なのか。明確な違いは「整数比で表せるか表せられないか」だが、循環小数と非循環小数をそれぞれ循環数列と非循環数列に置き換え(今問題にしているのは個数であり、小数点を取り除いても個数は変わらない)れば整数比は関係なくなるわけだし。単なる数字の組み合わせに過ぎない同じ無限数列でありながら、循環させないというだけで個数が多くなるというのは何とも妙な話である。

  • メルセンヌ素数でない素数は無限に存在するか?

    素数は無限に存在することが知られています。 ユークリッドやオイラーの証明があります。 また、コンピュータでは、大きい素数を探すときに、 メルセンヌ素数を探します。 しかし、メルセンヌ素数は無限にあるかどうかわかりません。 ここで、質問です。 メルセンヌ素数でない素数は、無限にあるのでしょうか? 素数はメルセンヌ素数かメルセンヌ素数でない素数のどちらかです。 その二種類を合わせると、無限個ありますから、 メルセンヌ素数が有限個ならば、メルセンヌ素数でない素数は無限個あるとわかります。 でも、メルセンヌ素数は有限個しか見つかっていないだけで、 本当に有限個かどうかはわかりません。 メルセンヌ素数でない素数が無限個あるかどうかもわからないのではないでしょうか? それとも、他の方法で、わかるのでしょうか? 例えば、メルセンヌ数(素数とは限らない)とメルセンヌ数(素数とは限らない)の間には、 2個以上のメルセンヌでない素数が存在することがわかっているとか。 でも、ずっと先に行くと、素数はすべてメルセンヌ素数になっているということは 考えられないでしょうか? しかし、双子素数が無限に存在するならば、メルセンヌ素数でない素数が無限に存在しそうですね。 双子素数より弱くても、よさそうですね。 素数分布とか考えると、どうなるのでしょうね。 やっぱり、メルセンヌ素数でない素数は無限個あるような気がしてきました。

  • 無限の操作の理解

    質問です。 1/3を少数に直したときの、3がずーっと続くものとか、 微積分の定義で、無限に分割とかありますが、 ずーっとはっきり理解できなくて困ってました。論理的には一応分かりますが。 最近、無限は、ダイレクトに人が捉えることができるものじゃないと思ったのですが、数学が得意な方はどうなのでしょうか? 無限集合の濃淡や、ほかには・・例えば、僕が2次元空間として理解していたのは、それはある種の近似であって、まず限定された有限の大きさの2次元空間を無意識に想像していて、それが、把握はできないけど、無限大に拡大したもの、として捉えてるなーと思ったのですが、他の方も同じですか? 素朴な疑問として、4次元立方体や、この無限とかも、ダイレクトにイメージできる人って、もしかしていませんか? どうもこうじゃないのかと思えてならないのですが、直観による把握の限界について、多分議論はされている気もしますが、直接伺った方が確かかなーと思ったので。 高校で微積分を習って以来の疑問です。 お返事お願いいたします。