- ベストアンサー
式変形がわからない・・・
z=1/w=1/(u+iv)=u/(u^2+v^2)-iv/(u^2+v^2) よりx=u/(u^2+v^2), y=-v/(u^2+v^2) を得れます。w平面における実軸に平行な直線v=v0, v0≠0のw=1/zによる逆像は x^2+(y+1/2v0)^2=(1/2v0)^2を満たす円になります。 この導き方がわかりません。 式変形を教えてください。 せっぱつまっています。
- みんなの回答 (2)
- 専門家の回答
関連するQ&A
- 線形代数の問題がわかりません。
線形代数についての以下の問題がわからないので、過程も含めて解答を教えて下さい。 3次元直交座標系で表される空間内の点P0(x0,y0.z0)と、これを通らない直線(x-x1)/u = (y-y1)/v = (z-z1)/wを含む平面の方程式を求める。 (1)点P0を含む任意の平面を表す方程式を記してください。 (2) (1)の方程式の平面が点(x1,y1,z1)を含むこと、直線を表す式を記してください。また(1)の平面が上記の直線と平行であることも示してください。 (3)求める平面の方程式は次式で与えられることを示してください。 | x-x0, y-y0, z-z0 | | x1-x0, y1-y0, z1-z0| = 0 | u, v, w |
- 締切済み
- 数学・算数
- 空間における平面の式 (ベクトル)
またまたベクトルに関しての質問です 空間における平面をどうやって式であらわすのか、或いは平面を表す式を見ても、なんでそうなるのかが分かりません。例えば以下のような問題のとき方がわかりません 直線1 x=1+2t, y=2-t, z=-1+3t 直線2 x=2-3m, y=2m, z=1-m という2つの直線を表す式があります。で、直線2を含み、また、直線1と平行である平面の式をもとめなさい。 どうやっていいのか見当がつきません。よろしくお願いします。
- ベストアンサー
- 数学・算数
- 水中ポンプのスターデルタ結線
お世話になります。 ポンプのスターデルタのデルタ結線についてご教示ください。 例えば盤内で電源R,S,Tに対して R→U, S→V, T→Wと R→X, S→Y, T→Z の順で接続されて端子台に出ていたとします。 ポンプ側の口出し線(U1⇔U2,V1⇔V2,W1⇔W2)と盤側の結線として ①U→U1, V→V1, W→W1, X→V2, Y→W2, Z→U2 ②U→U1, V→V1, W→W1, X→U2, Y→V2, Z→W2 ③U→U1, V→V1, W→W1, X→W2, Y→U2, Z→V2 ④U→U1, V→V1, W→W1, X→U2, Y→W2, Z→V2 ①が正しい繋ぎ方の場合、上記4パターン時の動作(症状)をご教示いただけませんでしょうか? U2,V2,W2側の入替だけで逆転になる事はあり得ますでしょうか? よろしくお願い致します。
- ベストアンサー
- 機械保全
- 多変数関数の上限と下限
次の F(x,y,z)=2x^2+2y^2+z^2+2xy-4xz-4yz という2次の3変数関数について、 F(x,y,z)/(x^2+y^2+z^2) ((x,y,z)≠(0,0,0)) -----------(1) の上限、下限を求めたいのですが、途中からわからなくなってしまい、投稿いたしました。 まず、 F(x,y,z)=(x y z)A(t(x y z)) というように、行列表示にしました。ただし、 |2 1 -2| A= |1 2 -2| |-2 -2 1| です。ここで、Aは実対称行列であり、直行行列Pを用いて対角化しました。Aの固有値はλ=1,-1,5ですので、F(x,y,z)を標準化し、 G(u,v,w)=-u^2+v^2+5w^2 という形にしました。また、(1)式の分母も、u^2+v^2+w^2という形に変換できると思いますので、(1)式は G(u,v,w)/(u^2+v^2+w^2) ((u,v,w)≠(0,0,0)) -----------(2) という(2)の上限、下限を求めればよいとなると思います。 上記のとこまで変換できたのですが、肝心の上限下限をもとめることができません。どなたかご教授していただけないでしょうか?よろしくお願いします。
- 締切済み
- 数学・算数
- 複素関数、双曲線関数の問題
関数w=coszで、z=x+yi,w=u+viと置く時,w=coszによってz平面状の直線"x=π/4(-∞<y<∞)"はw平面状の どのような図形に移るか (解答…双曲線2(u^2)-2(v^2)=1の右半分) u+vi=cos(x+yi) =cosx・cos(yi)-sinx・sin(yi) =cosx・cos(hy)-sinx・sin(hy) と直したのですが、ここからxの式をどう導くのかがわかりません そのままx=π/4を代入しても、 u+vi=(1/√2)cos(hy)-(1/√2)sinhy となり、解答の式に持っていくことができません ご教授、お願いします
- ベストアンサー
- 数学・算数
- microSDカードを挿入する際の正しい方法とは?
- 端子面を下にしてもmicroSDカードが戻ってくる場合の対処法とは?
- Lenovoノートブック(IdeaPad・Lenovo等)でのmicroSDカードの挿入方法