• 締切済み

複素関数の問題です。

この問題の回答方法が分からないのですが、回答方法をどなたか教えていただけませんか? よろしくお願いします。 次の各曲線C に沿って ∫(z^2 + 3z) dz を計算せよ。 (1) 円| z | = 2 の部分で,2 から2i まで(反時計まわり)。 (2) 2 から2i までの直線。 (3) 2 から2 + 2i までの直線と,2 + 2i から2i までの直線。 答え: 3つの場合とも-44/3-8i/3

みんなの回答

noname#157574
noname#157574
回答No.2

複素関数に関する質問は数学カテゴリで行ってください。

全文を見る
すると、全ての回答が全文表示されます。
  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.1

(1)・・・z = 2e^(iθ)と置いて極形式で表す(θは0→π/2まで動く事になる) (2)・・・∫(z^2+3z)dz をそのまま積分・・! (3)・・・(z = x+iyとすると、2→2+2iではz = 2+iy , 2+2i→2iではz = x+2i)で積分を分けて計算!

10232036
質問者

お礼

回答ありがとうございます! 理解することができました(*^_^*)

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 複素関数の周回積分

    例えば、 ∫_[C]dz/(z^2+1) Cは原点を中心とする半径2の円を反時計回りに一周する周回積分 この問題は、 =(1/2i)∫_[C]dz/(z-i)-(1/2i)∫_[C]dz/(z+i) に変形して、左側はz=iを中心とした単位円、右側はz=-iを中心とした単位円を考えればいいんですよね? この場合、 =(1/2i)∫[0,2π](ie^iθdθ/e^iθ)-(1/2i)∫[0,2π](ie^iθdθ/e^iθ) =0 と計算終わってから気付いたのですが、単位円の範囲は0から2πではなく2πから0ではないのですか? 教科書などの説明では閉曲線Cの内側に閉曲線C'を考えるとき、C'はCの反対回りなので∫_[C]=∫_[-C']なんですよね?

  • 複素積分の問題です。

    教科書の問題からの抜粋ですが、答えが省略されていて分かりません。私のやり方と答えで良いのでしょうか?教えて下さい。 問、(2z+1)/(z^2-1)を次のかく点を中心とし、半径1の正方向の円に沿って積分せよ。 (1), z=1/3 (2), z=i 答え、  (1), z=1/3を中心として半径1の正方向の円にそっての積分範囲は、C={ z|-2/3≦z≦4/3 } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(2z+1)/(z+1)*1/(z-1)dz と書ける。 ここで(2z+1)/(z+1)は曲線Cの内部で正則なので、コーシーの積分公式より z=1 と置いて、 ∫c(2z+1)/(z+1)*1/(z-1)dz=2πi*(2*1+1)/1+1=3πi (2), z=iを中心として半径1の正方向の円に沿っての積分範囲は、C={ z|0≦z≦2i } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(1/z)*(2z^2+z)/(z^2-1)dz と書ける。 ここで(2z^2+z)/(z^2-1)は曲線Cの内部で正則なので、コーシーの積分公式より z=0 と置いて、 ∫c(1/z)*(2z^2+z)/(z^2-1)dz=2πi*0=0   特に(2)は自信がありません。以上お願いします。

  • 複素積分

    複素積分の復習をしているのですが、参考書と違う答えが出てきてしまって、なぜその方法が間違っているのかわかりません。 Cを、|Z|=2を反時計回りに回る経路だとして、 ∫_C dz/(z(z-i))…(1) を計算するだけの問題で、答えは、コーシーの積分値の定理より4πiです。 自分は、最初、これを 1/(z(z-i))=i(1/z-1/(z-i)) と変換して、 (1)=i∫_C 1/z - 1/(z-i) dz…(2) ここで、z=0を時計回りに回る経路をC0,z=iを時計回りに回る経路をCiとおくと、 (2)=i(∫_C0 1/z - 1/(z-i) dz+∫_Ci 1/z - 1/(z-i) dz) =i(2πi - 2πi) =0 になってしまいます。この計算が明らかに間違っていることは、ほとんどの分数の複素積分が0になってしまうことからわかるのですが、どこが間違っているのでしょうか。 >管理人さんへ 課題を聞いている問題ではなく、復習中にどこが間違っているのかわからないので質問しているだけなので、削除しないでください。

  • 複素関数の積分

    C:原点を中心とする単位円の上半分に沿って1からiに至る曲線 ∫[c]z'dz z':zの共役複素数 この問題が解けないです   解説をお願いします ちなみに答えはπi/2です

  • 複素関数

    ∫c f(z)/(z-z0)(z-z1)dz の計算方法がわかりません。cは閉曲線です。実数のように計算すればよいのでしょうか?

  • 複素関数の周積分の問題です。

    問題は次の二つです。  ∫dz/(z-3i) 積分経路は |Z|=π で反時計まわり。  ∫(exp(z)/z)dz 積分経路は |Z|=2で反時計と|Z|=1で時計まわり。  初めの問題はコーシーの積分定理を使えば2πiになるのは、理解できるのですが、積分定理を使わずに与えられた積分経路で積分をしていった所(z(t)=πexp(it)とした。)、[log|πexp(it)-3i|] tの区間0~2π となりこれを計算すると0になってしまいました。なぜ答えが違うのでしょうか。 二番目の問題もコーシーの積分定理を使って二つとも同じ原点を中心とした半径rの円の積分経路に置き換えれば、0になることはすぐわかるのですが、定理を使わずに計算していった所∫iexp(exp(it))dtや∫iexp(2exp(it))dtといった項が出てきてこれが計算できないのです。この問題は大人しく定理を使わなければ解けない問題なのでしょうか。 以上の2点が分からず困っています。どなたかお力をお貸しください。 よろしくお願いします。

  • 複素関数(留数定理)

    複素積分に関しての質問です。 C:|z|=1 反時計回り向き とするとき ∫c (tan z)/z^4 dz を求める問題です。 極z=0の位数は、sin z /z が正則になることより3だと思う のですが、計算すると答えが発散してしまいます。 4で計算すると答えが合います(2πi/3)。 どういうことなのでしょうか?? よろしくお願いします。

  • 複素関数の積分について教えてください。

    複素関数で、次のような問題がだされました。 Cをx=cosyに沿って1から-1+πiに至る曲線とするとき、次の積分を求めよ。 ∫c ze^zdz よくわかってないので、次のような回答になってしまいました。 根拠はありません。 f(z)=ze^zは前平面で正則なので、f(z)の原始関数F(z)の原始関数によって ∫c (ze^z)dz=[ze^z](←πiから1まで)-[e^z](←πiから1からまで) =πie^πi-e-(e^πi-e) 以上です。 どなたか、正しい答えを教えてください。

  • 複素積分2

    問題1 I=∫c 1/(z^2+1) dz 次の各曲線Cに沿って求める問題です。 (1)c:|z|=2 (2)c:|z-i|=1 問題2 I=∫c 1/z(2z+1) dz c:|z|=1 絶対値がついた問題はどうやって解けばいいのでしょうか?

  • 複素関数の積分

    (1)C:0から2+iに至る曲線 ∫[c](z^2-iz+2)dz (2)C:πから2πiに至る曲線 ∫[c]ze^(-z)dz この2問がどうしても解けないです 解説をお願いします