• ベストアンサー

複素関数(留数定理)

複素積分に関しての質問です。 C:|z|=1 反時計回り向き とするとき ∫c (tan z)/z^4 dz を求める問題です。 極z=0の位数は、sin z /z が正則になることより3だと思う のですが、計算すると答えが発散してしまいます。 4で計算すると答えが合います(2πi/3)。 どういうことなのでしょうか?? よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.2

ちゃんと留数を求める、あるいはローラン展開して1/zの項の係数を求めて、 留数定理を適用して下さい。 ローラン展開は tan z をz=0でテイラー展開してから全体を z^4 で割ってやればいいでしょう。 そうすれば 留数が 1/3 になりませんか? 留数定理により、 積分は 2πi(1/3) となります。 2位以上の極(特異点)を持つ複素関数における留数定理やm位の極を持つ場合の留数の求め方を今一度、復習し直してみて下さい。 複素積分は、積分経路内の、ローラン展開における1位の極、つまり留数のみの和をとって、2πi倍したものになります。

参考URL:
http://www.th.phys.titech.ac.jp/~muto/lectures/Amath06/am_chap11.pdf
yukky77777
質問者

お礼

留数を公式によって求めるのは非常に難しいので、 直接ローラン展開を求めるのですね。 勉強になりました。ありがとうございます。

その他の回答 (1)

  • saus
  • ベストアンサー率50% (5/10)
回答No.1

ローラン展開してみよ。

yukky77777
質問者

お礼

回答ありがとうございます。 公式を使うのではないのですね。

関連するQ&A

  • 複素積分

    複素積分の復習をしているのですが、参考書と違う答えが出てきてしまって、なぜその方法が間違っているのかわかりません。 Cを、|Z|=2を反時計回りに回る経路だとして、 ∫_C dz/(z(z-i))…(1) を計算するだけの問題で、答えは、コーシーの積分値の定理より4πiです。 自分は、最初、これを 1/(z(z-i))=i(1/z-1/(z-i)) と変換して、 (1)=i∫_C 1/z - 1/(z-i) dz…(2) ここで、z=0を時計回りに回る経路をC0,z=iを時計回りに回る経路をCiとおくと、 (2)=i(∫_C0 1/z - 1/(z-i) dz+∫_Ci 1/z - 1/(z-i) dz) =i(2πi - 2πi) =0 になってしまいます。この計算が明らかに間違っていることは、ほとんどの分数の複素積分が0になってしまうことからわかるのですが、どこが間違っているのでしょうか。 >管理人さんへ 課題を聞いている問題ではなく、復習中にどこが間違っているのかわからないので質問しているだけなので、削除しないでください。

  • 留数の計算について

    ∫c zsin(iz)/(z-iπ)^3 dzを計算しろという問題なのですが。z=iπを代入するときにsin(iz)も0になるのでいiπは2位の極と先生がいってました。 これはどうしてなのでしょうか?sin(iz)/(z-iπ)がz=iπで1になるからですか? また実際に計算するとき答えは ∫c ze(iz)/(z-iπ)^3 dz=2πiR(πi)からその虚部をとって答えとする方法を使ったんですが。積分でやると0。微分でやると2πになりました。 本当の答えってなんになるでしょうか?

  • 複素関数の積分

    答えられるのだけでいいのでどなたか是非お願いします;; (1)ローラン級数などの公式で次の特異点の留数を計算過程を示して求めよ。 (1)4/(1+z)^2 (2)sin 2z/z^6 (3)1/(1-e^z) (2)次の積分(留数積分)を反時計回りで計算せよ。 (4)∫c tan πz dz (C:|z| = 1) (5)∫c e^z/cos z dz ( C:|z| = 3) (6)∫c z+1/z^4-2z^3 dz (C:|z| = 1/2)

  • 複素積分

    z=π/2を中心とした、半径π/2の円周上を始点をz=π、終点をz=0としてπだけ反時計回りに回る積分路をCとして、複素積分∫C zcos(z)dzを求める問題がわかりません。 z=π/2+π/2e^(iθ)と置換してみても、積分を計算することができません。 解き方を教えて欲しいです。ちなみに答えは2です。

  • 留数定理を用いる計算

    曲線Cが|z-i| = 1 で表される円であるとき、∫c {(e^z)/(z^4 -1)}dz の値を求めよ という問題にて、 (z^4 -1)=(z+i)(z-i)(z+1)(z-1)  Cはz=iを中心とした半径1の円なので、正則で無い点はz=iのみ z=iにおける留数 Res[f,i]=lim[z→i](z-i)f(z) =(e^i)/{2i(i+1)(i-1)} =(e^i)/(-4i) 留数定理より、 ∫c {(e^z)/(z^4 -1)}dz  =2πi{-(e^i)/4i} =-πei/2   と計算しました しかし、解答は -{(πcos1)/2} - {(πsin1)i}/2 とのことでした。 解答から、正則で無い点が2つ、それぞれが2位の極だと考えたのですが、見当がつきません ご教授、お願いします

  • 複素解析 留数定理

    ∫[|z|=3] dz/(z^2 -3z+2) ∫[|z|=2] z/(z+1)(z^2 +1) という2つの問題を留数定理を使って自分なりにチャレンジしてみたのですが、よく理解できないところがあるので質問させていただきます。 まず特異点(?)を求めるのに2問とも分母=0としました。 そして留数を出すのにlim(z→a) f(z)(z-a) としました。 最後に留数定理で2πiをかけて、それぞれ答えが0、πiとなりました。 参考書の見よう見まねでやったので、ほとんどチンプンカンプンな状態なんですが答えとしては合っていますでしょうか。 また、留数を求める際に「○位の極」っていうのを意識しないといけないようなのですが、ここではどうなのでしょうか。 最後に、問題に「反時計回り一周の積分である」とありますが、特に意識しないといけませんか? よろしくお願いします。

  • 複素関数の積分

    周回積分∫dz/(zsinz) (|z|=1)の積分はz=0で2位の極を持ちます。よって後は留数定理にしたがって計算するだけなのですが、答えが合いません。答えは0ですが、どうしても留数が1になって積分値が2πiになってしまいます。 お手数ですが、どなたか計算過程を教えてもらえないでしょうか。

  • 複素積分の問題を教えてください。

    下の複素積分Iを求めよ。 I=∮c|z|dz ただし、積分路Cは図のように単位円|z|=1の上半部、反時計周りとする。 よろしくお願いします。途中計算も教えてください。苦手なので丁寧にやっていただけると助かります。

  • 複素関数 留数定理

    ∫[C] {f (z) / ( 1 + z^2 )} dz の計算 C : √2 * e^(iθ) (π/4 ≦θ≦5π/4) f ( i ) = 1/3 また, ∫{f((i + 1)t)/(1 + 2it^2)) dt = π/6である. ・・・※ ∫[C] {f (z) / ( 1 + z^2 )} dzを求める過程を教えて下さい. -1-iから1+iに至る直線Ct: (i + 1)t (-1 ≦ t≦ 1)を 考え, ∫[C + Ct] = 2πi Res{f , i} だと考えたのですが, ここから先が分かりません. ※の(i + 1)t が同じなので, それをうまく 利用するというのは分かるのですが, どのように使うのかが分かりません よろしくお願いします. z = i が1位なのか2位なのかという点も教えて下さい.

  • 留数定理

     皆さん、こんにちは。今回は留数定理について聞きたいことがあるのですが問題は、 Cを円 |z+i|=2 とするとき留数定理を使って∫c {z^2・sin (1/z)}dz を求めなさい。  というものですが、私はこの時、(z^2)と{sin (1/z)}で部分積分を利用してとこうとしています。そこで、参考書やネットを通じて調べましたが、sin (1/z)の積分の仕方が今ひとつ理解できません。 どなたか、分かる方がいらっしゃれば幸いです。よろしく願います。