• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:高階偏微分係数とテイラー展開)

高階偏微分係数とテイラー展開

このQ&Aのポイント
  • 高階偏微分係数とテイラー展開について説明します。
  • 多重指数や微分の公式を利用して、テイラー展開を導く方法を解説します。
  • テイラー展開を用いて関数を近似する手法を紹介します。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

himajin4649さん、こんにちは。(2)の最初の式はF(t)のテイラー展開  F(x)=Σ<p=0→n>{F^(p)(0)} x^p/p! +   1/n!∫<0→x>(x-t)^n・F^(n+1)(t)dt でx=1とおいたものです。次の式はこの式に(1)で求めた  F^(p) (t) = (h^p)Σ(p!/α!)(∂^α)f(a+th) を代入するだけです。 

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

回答No.1

himajin4649さん、こんにちは。(2)の方はどこまでが問題なのかよく分かりません。(1)の方だけ回答します。変数の数をn、微分の階数をkとして、  F^(k) (t)  =(h^k)Σ(k!/α!)(∂^α)f(a+th) …(1) を示します。ここで和は  α1+α2+α3・・+αn=k となるようなkの分割についての和です。  (d/dt)f(a+th) = hΣ∂i f(a+ht) なので(ここで和はiについて1からnまでの和)  F^(k) (t)  =(h^k)Σ∂i1∂i2…∂ik f(a+th) となります(ここで各iについて1からnまでの和)。次ぎに偏微分の順序は交換できるとします。するとΣ∂i1∂i2…∂ikの中で∂1^α1・∂2^α2・∂3^α3…∂n^αn に等しくなるのは、色1の玉がα1個、色2の玉がα2個…色nの玉がαn個で合計k個あるときの順列の数だけあります。これが(k!/α!)です。したがって(1)が成立します。

noname#6780
質問者

補足

(1)のほうでΣの下に|α|=nと書き忘れました。すいません。あと(2)に関してですが、2つの等式を示したいって事です。Σの隣にある〈〉はΣの下に書くべき値です。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • テイラー展開

    テイラー展開 教科書に「n=3として、f(x)=sinxのx=π/4におけるテイラー展開を求めよ。」という問題があります。 f(x)=sinxは無限回微分可能。 n=3 a=π/4 としてテイラー展開を行う。 n=3なので、テイラーの定理に(n+1)乗まで、a=π/4を当てはめればいい。 そして、f(x)、f'(x)、f''(x)…と、(n+1)回微分まで求めて、求めた値f(π/4)、f'(π/4)、f''(π/4)…をテイラーの定理に代入する。 講義のルーズリーフをなくしてしまい、記憶で解いていたのですが果たして考え方が合っているのか不安です。これでいいんですよね?

  • テーラー展開とマクローリン展開

    独学なのでいまいちはっきりわからなく。。。 f(x)のテーラー展開 Σ(n=0~∞) (☆/n!)(x-a)^n (☆はf(x)をn回微分したものにaを代入した値) 1)マクローリン展開はテーラー展開の一種である。(テーラー展開のaに0を代入したものをマクローリン展開という) 2)aに代入する値は別に何の数字であっても展開はできる 3)テーラー展開は基本的に無限回微分可能な関数をf(x)=多項式の形に直すのに使われる という理解でいいのですか? 間違ってたら訂正お願いします。 またこれはいつ使うのでしょうか。。?

  • テイラーの定理を用いた問題がわかりません

    関数f(x)がx=aの付近で、n+1回微分可能で、f(n+1)(a)≠0のとして(f(k)(x)はf(x)をk回微分したものを表しています。) テイラーの定理 f(a+h)=f(a)+f(1)(a)h+f(2)(a)(h^2)/2!+,,,,,,,,+f(n-1)(a)(h^(n-1))/(n-1)!+f(n)(a+θh)(h^n)/n!  (0<θ<1) (最後の項はラグランジュの剰余項です。テイラーの定理を書き換えたものです。後、写し間違えはしてません) において、lim(h→0)θ=1/(n+1) であることを示したいんです。 御教授よろしくお願いします。

  • 一変数テイラー展開の一般項

    お気に入り f(x)=log(x+√(1+x^2))とするとき、x=0におけるテイラー展開をしました。f(x)を微分していくと f'(x)=1/(x^2+1)^(1/2) f''(x)=-x/(x^2+1)^(3/2) f'''(x)=(2x^2-1)/(x^2+1)^(5/2) f''''(x)=-3(2x^3+3x)/(x^2+1)^(7/2) f'''''(x)=3(8x^4-24x^2+3)/(x^2+1)^(9/2) f''''''(x)=-15x(8x^4-40^2+15)/(x^2+1)^(11/2) f'''''''(x)=45(16x^6-120x^4+90x^2-5)/(x^2+1)^(13/2) となりました。これをマクローリン展開の公式に代入すると f(x)=x-(x^3)/6+(3x^5)/40-(5x^7)/112…剰余項 となりました。 一般項を求めたいのですが、 f'(x)=1/(x^2+1)^(1/2)のときx^2=tと置き、 g(t)=(t+1)^(-1/2)としました。 g(t)についてn回微分し g(n回微分)(t)=(‐1)^n*(((2n-1)!!)/2^n)*(1+t)^-((2n-1)/2) となりました。 g(t)についてt=0の時テイラー展開したところ g(t)=1-t/2+3t^2/8-5t^3/16+…+((‐1)^n*(((2n-1)!!)/2^n))/n!+Rt となりました。 f'(x)=g(x^2)なのでg(t)のテイラー近似にx^2を代入したものがf'(x)のテイラー近似になることはわかりました。 しかしf(x)とf'(x)のテイラー近似は 数式的にはf(x)=∫f'(x)dxになると思いますが、 それには証明が必要になると言われました。また、gとfの関係をはっきりさせ、g(t)のテイラー展開からf'(x)のテイラー展開を求め、 それがf'(x)のテイラー展開と一致することからf'(0)、f''(0)…をもとめ、それを用いてf(x)のテイラー展開を書けばよいらしいのですが、 どのようなステップを踏めば良いか分かりません。 お力をお貸しください。

  • テイラーの定理を用いた問題が解けません。

    関数f(x)がx=aの付近で、n+1回微分可能で、f(n+1)(x)≠0のとして(f(k)(x)はf(x)をk回微分したものを表しています。) テイラーの定理 f(a+h)=f(a)+f(1)(a)h+f(2)(a)(h^2)/2!+,,,,,,,,+f(n)(a+θh)(h^n)/n! において、lim(h→0)θ=1/(n+1) であることを示したいんです。 正直、何から始めればいいのか全くわかりません。 御教授よろしくお願いします。

  • 微分積分

    微分積分(難) f(x)がC^(n+1)級の関数、f(n回微分)(a)≠0のとき、テーラのー展開 f(a+h)=f(a)+f’(a)h+(1/2!)f’’(a)h^2+…+{1/(nー1)!}f(nー1回微分)(a)h^(nー1)+(1/n!)f(n回微分)(a+θh)h^n における0<θ<1についてlim(h→0)θを求めよ 。 宜しくお願いします。

  • 微分積分

    微分積分(難) f(x)がC^(n+1)級の関数、f(n回微分)(a)≠0のとき、テーラのー展開 f(a+h)=f(a)+f’(a)h+(1/2!)f’’(a)h^2+…+{1/(nー1)!}f(nー1回微分)(a)h^(nー1)+(1/n!)f(n回微分)(a+θh)h^n における0<θ<1についてlim(h→0)θを求めよ。 宜しくお願いします。

  • 微分積分

    微分積分(難) f(x)がC^(n+1)級の関数、f(n回微分)(a)≠0のとき、テーラのー展開 f(a+h)=f(a)+f’(a)h+(1/2!)f’’(a)h^2+…+{1/(nー1)!}f(nー1回微分)(a)h^(nー1)+(1/n!)f(n回微分)(a+θh)h^n における0<θ<1についてlim(h→0)θを証明せよ。 宜しくお願いします。 投稿日時 - 2012-05-27 01:18:31 通報する

  • 微分積分(難)

    f(x)がC^(n+1)級の関数、f(n回微分)(a)≠0のとき、テーラのー展開 f(a+h)=f(a)+f’(a)h+(1/2!)f’’(a)h^2+…+{1/(nー1)!}f(nー1回微分)(a)h^(nー1)+(1/n!)f(n回微分)(a+θh)h^n における0<θ<1についてlim(h→0)θを証明せよ。 宜しくお願いします。

  • ファンデルモンドの行列式の証明方法

    d/dt|A1(t),A2(t),....,An(t)|=|A1'(t),A2(t),....,An(t)|+ |A1(t),A2'(t),....,An(t)|+..... +|A1(t),A2(t),....,An'(t)| を使って、ファンデルモンドの行列式 |1 x1 x1^2 .... x1^(n-1)| |1 x2 x2^2 .... x2^(n-1)| | . . . . . . . . . . . . . . . . .| | . . . . . . . . . . . . . . . . .| =Π(xj-xi) (1<=i<j<=n) | . . . . . . . . . . . . . . . . .| | 1 xn xn^2 .... xn^(n-1)| を証明するという問題にどなたか回答お願いします。