• ベストアンサー

群論の問題です。

Gを群とする。 H⊂G H・H⊂H|H|<∞のときHがGの部分群であることを示せ。 という問題なんですけど、 ∀h∊H⇒h^(-1)∈Hということが示せなくて困っています。どうか教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • hrsmmhr
  • ベストアンサー率36% (173/477)
回答No.1

h^nはH*H⊂Hの元で有限個だから h^k=h^lとなるk,l,k>lが存在して h^(k-l)=1となる

関連するQ&A

  • 群論の問題です。

    群論の問題です。 整数全体がなす加法群Zに対して、G=Z×Z={ ( a,b ) |a,b ∈ Z } とおき これを成分ごとの加法 ( a , b )+( a' , b' )=( a+a' , b+b' ) により群と見なす。 2元 x = ( 2 , 4 ) , y = ( 6 , 8 )により生成される群Gの部分群Hとし、 写像 φ : G → H を φ(( a , b )) = ( 2a + 6b , 4a + 8b) = ax + by により定義する。ことのきつぎの問いに答えよ。 (1)φは群の同型写像であることを示す。 (2)φによるHの像 K= φ (H) = { φ ( h ) | h ∈ H } はGの部分群であることを示す。 (3)GのKによる剰余群 G / H に対して群の同型 G / H ≅ Z / mZ × Z / nZ がなりたつような自然数 m , n で m が n の約数となるものを求める。 (1)、(2)は示すことができたのですが、 (3)の考え方がよくわかりません。 できるだけわかりやすく教えていただけるとうれしいです… よろしくお願いします。

  • 群論の問題です

    (1)G, G′ を群,H を G の正規部分群とする.f : G → G′ が準同型写像のとき f(H)は G′ の正規部分群か否か? 正規部分群ならば証明し,そうでないならば反例をあげよ. (2) n を正整数とするとき,Aut(Z/nZ) ≅ (Z/nZ)^x を示せ. この二問がわかりません。教えていただければ幸いです。

  • 群論の問題について

    Gを群とし、H,Kをその部分群とする。 1、|G:H|が有限ならば |K:H∩K|≦|G:H| が成り立つことを示せ 2、K⊂H⊂Gとする。 |G:H|、|H:K|が有限ならば、 |G:K|=|G:H||H:K| が成り立つことを示せ。 -------------------------- お願いします!

  • 群論

    『群Gの位数は,ある部分群Hの正規化群N(H)の位数と,その部分群の共役類の位数(位数をc(H)とする) (その部分群に共役な部分群が何個あるか)の積に等しい』という |G|=|N(H)|*|C(H)|の証明はどう考えていけばいいのでしょうか。

  • 群論です

    Gを群、Hをその指数有限な部分群とする。Hに含まれるGの指数有限な正規部分群Nが存在することを示せ。  全く分かりません。どなたか教えてください。

  • 群論の問題です。

    群 G に対し,Int G はAut G の正規部分群である事を示せ。 この問題がわかりません。なるべく証明っぽく示していただける助かります。

  • 群論の交換子群について

    (問題) Gを群,HをGの部分群とする.また,[G,G]をGの交換子群とするとき, [G,G]⊂H⇔H\GかつG/Hがアーベル群 となることを示せ. ここで,H\GはHがGの正規部分群であることを表し(記号が環境依存文字だったので\で代用させていただきました),G/HはHによる商群とする. (質問) この証明なのですが,H\Gは証明できました,しかし,G/Hがアーベル群であることが示せません. 手持ちの参考書には,任意のGの元a,bに対して, {a^(-1)b^(-1)ab}H=H・・・(1) であるから, (aH)(bH)=abH=ba{a^(-1)b^(-1)ab}H=baH=(bH)(aH) よって,G/Hはアーベル群である. とあるのですが,(1)が示せません. (1)が示せれば後は簡単なのですが,ここが理解できないので困っています. a^(-1)およびb^(-1)はそれぞれa,bの逆元です. どなたか群論に詳しい方よろしくお願いします.

  • 群論について(部分群)

    群Gが正規部分群Nと、部分群Hを持つとします。 このとき、HNはGの部分群となり、NはHNの正規部分群になるみたいなのですが、これは何故なのでしょうか? よろしくお願います。

  • 群論

    定理:有限冪零群GのΦー部分群(Frattini部分群)はGの交換子を含む (証明)Gの極大部分群をG*とすればG*は正規で、かつ(G:G*)は素数である。故にーー と続く中で「(G:G*)は素数である」というのはどうしてでしょうか。わかりやすく説明ください。

  • 群論

    何度も考えても分からず質問致しました。 xy平面における合同変換O2(R)をGとし,回転部分群Rot(V2(R))をHとする!また,X軸に関する対称変換をfとする!このとき,G=H∪fHとなることの証明を教えてください!