• ベストアンサー
  • 暇なときにでも

不定積分∫f(x)dxのdx

不定積分∫f(x)dxのdxとはなんですか?

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数1503
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • IveQA
  • ベストアンサー率43% (16/37)

←ANo.2 そそ。(ヒント回答お疲れさん!) ANo.1でtomokoichさんが言うべき事を言っていて良かったんだけどね。 dxはxの微分(xの微小量)とも言えるよね。 区分求積法で言えばx=k/nでdx=1/nに相当するよ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

 ありがとうございます。 ただ、タメ語口調はおやめください。 今後もこちらも負けず、頑張って学習していきます。

関連するQ&A

  • 不定積分について

    不定積分を表す記号は ∫f(x)dx ですが、dx は何のためにあるのですか? f(x)の不定積分を∫f(x) で表してはいけないのですか?

  • 積分 dx について

    積分のdxについて ・不定積分・・・・・微分の逆操作 ・定積分・・・・・・総和Σの極限 であると理解しています。 関数F(x)をf(x)の原始関数とすると、F(x)の微分は、 d/dxF(x)=f(x)です。 不定積分の場合は、微分の逆操作なので、 d/dxF(x)=f(x)の両辺を積分すれば、∫d/dxF(x)=∫f(x)となります。 よって、不定積分は∫f(x)=F(x)+Cではダメなのでしょうか? わざわざf(x)dxとして積分する理由がわかりません・・・ 微分の逆操作という意味であれば、∫f(x)=F(x)+Cはとてもしっくりくるのですが・・・ もちろん、式変形を行いd/dxF(x)=f(x)より、dF(x)=f(x)dxとなり、 両辺を積分すれば、∫f(x)dxが導けることは理解できます。 ∫f(x)dxは、F(x)の接線の傾きであるf(x)とdxでの面積の総和となり、 ∫f(x)dxが直感的に微分の逆操作というイメージが沸きません・・・ F(x)の接線の傾きであるf(x)とdxでの面積の総和が原始関数となる事を 教えて頂けませんでしょうか? (もちろん、積分定数分は切片としてズレる事は理解しています。) そもそも∫○dxは、一対で考えなければならないのでしょうか? このdxが何で積分するかを表すという考えなのでしょうか? ということは、 ・不定積分・・・・・微分の逆操作→∫f(x)dxのdxは何で積分するかを表すための記号 ・定積分・・・・・・総和Σの極限→∫f(x)dxのdxは幅 という解釈で良いのでしょうか? 定積分であれば、面積=Σ(高さ×幅)となるので、∫f(x)dxは理解できます。f(x)が高さでdxが幅。 ※質問内容※ ・不定積分は、∫f(x)=F(x)+Cではダメか。  ダメな場合、なぜダメなのか。 ・∫○dxは一対で考えなければならないのか? ・F(x)の接線の傾きであるf(x)とdxでの面積の総和がなぜ原始関数になるのか? ・不定積分における∫f(x)dxのdxとは”何で積分するか”を表す記号と解釈してよいか? 以上、長々とあほな質問ですがご回答よろしくお願い致しますm(__)m ちなみに、以前私と同様の質問の方がいらっしゃいました。 http://okwave.jp/qa1415099.html

  • 不定積分についてです

    (置換積分) f:[a,b]→[c,d]がC^1級でg:[c,d]→Rが連続であるとき次の式が成立する ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy この定理が成り立つのは良いのですが,不定積分について ∫g(f(x))f'(x)dx =∫g(y)dy が成り立つ理由がわかりません… 部分積分も同様に,定積分の式ならわかるのですが、不定積分について ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) となる理由がわかりません。 大学数学での不定積分のきちんとした定義とともに、 ∫[a,b]g(f(x))f'(x)dx = ∫[f(a),f(b)]g(y)dy ∫f(x)g'(x)= f(x)g(x)-∫f'(x)g(x) の成り立つ理由がわかる方がいらっしゃいましたら回答よろしくお願い致しますm(__)m

その他の回答 (2)

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

あれ? A No.1 が削除されて、繰り上がってるな。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

 ありがとうございます。 質問者に対する指摘ということで削除されました。 これからも学習を続けます。 またお願いいたします。

  • 回答No.1
  • alice_44
  • ベストアンサー率44% (2109/4758)

いや、まあ、こういう質問者のほうが、こちらも、 学校教育とか、受験数学とか、質問者の置かれた 状況を気にせず、本来正しいことを遠慮なく 書けるというものです。 dx とは、x の微分です。 dF(x)/dx = f(x) となるような F(x) があれば、 f(x)dx = dF(x) と書くことができます。 この dF(x) を F(x) の 微分と呼びます。 dF(x)/dx が F(x) の微分だろうって? それは、微分係数。微分は、dF(x) です。 微分 d と積分 ∫ は(ほぼ)逆操作なので、 ∫dF(x) = F(x) + (定数) となるのです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ∫(a,b)αf(x)dx=α∫(a,b)f(x)dxという定積分の性質の証明について

    aからbまでのf(x)の定積分を∫(a,b)f(x)dxと表します。 不足和・過剰和から始まって定積分を定義した後の、「f(x)が区間[a,b]でリーマン積分可能で、αが定数ならば、∫(a,b)αf(x)dx=α∫(a,b)f(x)dx」という定積分の性質の証明についてですが、大学初年級の理工学部向けの教科書・参考書ではこの定理の証明はたいてい「容易なので省略する」となっており、私が見た中で唯一証明してあるのは「微分積分学1」(三村征雄、岩波全書)です。 この本(235ページ)によると、α≧0、α≦0の二つの場合に分けています。α≧0の場合は容易ですが、α≦0のときにはsup(-f(x))=-inff(x)であることを示してからひとつの補題を証明し、その後に上の証明に取り掛かっています。これによると、この定理は、どうも「容易なので省略する」とはいえないような気がします。 そこでお尋ねですが、 1 αの場合分けをしないなどして、定積分の定義から容易に、それこそ2,3行ぐらいで証明する手法はありますか? (ただし、f(x)が連続関数であるときの定理∫(a,b)f(x)dx=F(b)-F(a)(F(x)はf(x)の原始関数)というルートは使わないものとします。) 2 もし、容易でないにもかかわらず証明を省略する場合は紙数の都合によるのでしょうか? 3 初学者には容易ではないのに、著者がそう判断してしまっているということはありえますか? 以上、よろしくお願いいたします。

  • ∫(ax^n + b)^α dxに対する不定積分の公式を探しています

    ∫(ax^n + b)^α dxに対する不定積分の公式を探しています 本には ∫(ax + b)^α dx = {(ax + b)^(α+1)} / {a(α+1)} + C   (a≠0) という、xが1次の場合の不定積分の公式は載っています。具体的には ∫(2x + 1)^2 dx = {(2x + 1)^3} / {2(3)} + C みたいなのですね。 ただ、 ∫(ax^n + b)^α dx のように、xの次数が高い場合は載っていません。 ネットで検索しても見つかりません。 ∫(2x^2 + 1)^2 dxなら展開してから不定積分を行えば良いのですが、 ∫{x(a^2 - x^2)^(1/2)} dx のような、もっとややこしい場合は展開もできません。 そのような場合はどうやって計算するのですか? 勘で ∫(ax^n + b)^α dx = {(ax^n + b)^(α+1)} / {ax^(n-1)(α+1)} + C と思ったのですが、違いますか? では、お願いします。

  • 不定積分∮(x+5)/(x^2+5)dxの途中式を

    不定積分∮(x+5)/(x^2+5)dxの途中式を教えて下さい。よろしくお願いします。

  • 不定積分の性質の証明

    不定積分の性質で有名な以下の公式 ∫kf(x)dx = k∫f(x)dx  (ただし、kはゼロ以外の定数) これの証明方法をご存知の方、ぜひ教えてください。 よろしくお願いします。

  • lim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxが示せません

    宜しくお願いいたしました。 [問]各n∈Nに対し,f_n(x)=nx/(1+nx),x∈[0,1]とする。 数列{f_n}は[0,1]で積分可能関数fには各点収束するが一様収束しない事を示せ。 そしてlim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxとなる事を示せ。 で「lim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxとなる」が示せずに困っています。 f(x)= 1/e (x=1の時) 1 (0<x<1の時) 0 (x=0の時) と積分可能関数fが求めました。 でも 0<x<1の時 lim[n→∞]∫[0~1](f(x)-f_n(x)) =lim[n→∞]∫[0~1](1-nx/(1+nx))dx =lim[n→∞]∫[0~1](1/(1+nx))dx =lim[n→∞][-n/(1+nx)^2]^1_0 =lim[n→∞](-n/(1+n^2)+n) となり0になりません。何か勘違いしておりますでしょうか?

  • 不定積分∫1/(1+sinx)dxがわかりません。

    不定積分∫1/(1+sinx)dxがわかりません。 よろしければ計算過程も含めて教えてもらえるとうれしいです。 よろしくお願いします。

  • dxについて。

    不定積分で、でてくる∫f(x)dx=F(x)+Cとすると 左辺のdxはなぜかけられてるのでしょうか? dxは微小なxの微小変動量と書いてありましたが、 かけなければいけないのでしょうか??   初歩的な質問ですみません。

  • 不定積分が解けないので教えてください。

    不定積分が解けないので教えてください。 f(x)=(x-1)/(x^2-2x+5)の時の不定積分が解けないんです。教えていただけませんか? x/(x^2-2x+5)と-1/(x^2-2x+5)に分けて前者を積分することができたのですが後者の積分の仕方が分かりません。

  • 不定積分と定積分

    この問題教えてください。 不定積分と定積分を求めよ。(2)は上端に3下端に1です (1)∫(4x+3)^6dx (2)∫(3) √2x+3dx (1) (3)∫1/(5-2x)dx (4)∫(2) x{(x/2)-1}^7dx (6) (5)∫e^(-5x) dx

  • 不定積分

    不定積分の問題で ∫(4x^3+5/x^6)dxの答えがなぜx^4-1/x^5+Cになるのかわかりません。 4x^3はx^4になるのはわかりますが5/x^6がなぜ-1/x^5になるんですか? 分数の不定積分の公式でもあるんでしょうか?