• ベストアンサー
  • 困ってます

ホールダを含む伝達関数の逆システムの離散化

以前から伝達関数の計算方法について質問しています。 今回はホールダを伝達関数に含めたときの計算に詰まってしまいました。 伝達関数G(s)=(Ds^2+Es)/(As^2+Bs+C)とします。 そこにホールダの伝達関数GH(s)=(1-exp(-sT))/sを加えた伝達関数の逆システムを離散化したいと思っています。 完成形はG^-1(s)=1/(G(s)*GH(s))を離散化したG^-1(z)です。 よってG^-1(s)=(As^2+Bs+C)/{(Ds+E)(1-exp(-sT))}をZ変換できるように分子のsを消してexp(-sT)を分子にもってくればいいと思います。 そこでX/(Ds+E)-Y/(1-exp(-sT))という風に部分分数分解したところ G^-1(s)=(As^2+Bs+C)/{(Ds+E)(1-exp(-sT))}={-YDs+X(1-exp(-sT))-YE}/{(Ds+E)(1-exp(-sT))} となりました。 ここまでやったところで係数比較する際のexp(-sT)の扱いに困っています。 このような伝達関数を直接Z変換はできないのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数680
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

ホールド伝達関数 {1-exp(-s)}/s の有理式化、などでは通用しませんか?  {1-exp(-s)}/s → 1 - s/2! + s^2/3! - ........    ↓ 参考URL / サンプル&ホールドの伝達関数に関する疑問     

参考URL:
http://kodawari.main.jp/index.php?%EF%BC%B3%EF%BC%86%EF%BC%A8%E3%81%AE%E4%BC%9D%E9%81%94%E9%96%A2%E6%95%B0

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 参考URLのサイトを見ながらやってみます!

関連するQ&A

  • 伝達関数のZ変換について

    ある伝達関数をZ変換しようと計算しているのですが困ってしまいました。 分子分母とも2次式のG(s)=(As^2+Bs+C)/(Ds^2+Es)という式です。(A~Eは係数) 部分分数分解してZ変換しようとしましたが分子のsが消えないため変換できません。 逆ラプラス変換で時間関数にしようにも同じ理由でできません。 この関数は計算できないのでしょうか?

  • z変換の伝達関数

    z変換から伝達関数H(z)にするための計算がわかりません。 さらに逆z変換からインパルス応答を求めて 伝達関数H(z)から周波数スペクトルH(Ω)を求めるというものがでてきて 頭が混乱してどうすればいいのか・・・ 色々とサイトを調べたのですが・・・ どれも伝達関数F(z)と出てきます・・・ まず伝達関数すら教えられていないのです。 z変換や逆z変換は理屈だけ説明されでどう使えばいいのか・・・。 自分のためというより今はこの結果を知りたいです。 申し訳ないのですがよろしくお願いします

  • 伝達関数に関する問題が解けません。 パルス伝達関数

    次の図の伝達関数P(s)に0次ホールドを前置して、サンプリング周期hで離散化した時のパルス伝達関数P(z)の係数a1,a2,b1,b2を求めよ。なおe^(-h)=0.8187,e^(-2h)=0.6703とする。 という問題が解けません。 P(s)の分母が1次関数の場合は解けるのですが、2次関数になると解けません。 よろしくお願いします。

  • 伝達関数を求める

    ステップ応答が y(t)=1-(exp(-3t))*(sin2t+5cos2t) 初期値は0 このときの(1)伝達関数を求める。と(2)インパルス応答を求める が問題です (1)はといたら伝達関数G(s)=(-4s^2-11s+25)/((s+3)^2+4) になりインパルス応答を求めると デルタ関数が出てきてしまい???です ということで聞きたいのは 1、伝達関数があっているか 2、インパルス応答にデルタ関数が出てきてもいいか   もしくは、計算ミスでデルタ関数が出ているだけか 困っているので回答よろしくお願いします。。。

  • DSP:伝達関数H(z)を求める目的は?

    差分方程式だけ立てればScilab上で、 伝達関数H(z)を使わず、差分方程式だけで 信号処理プログラムが書けるがわかりました。 なのに何故にZ変換で伝達関数H(z)を求める 必要があるのでしょうか? 今書いているプログラムではScilab上で、 伝達関数の式は出てこず、差分方程式だけ 使っています。 利得の式や周波数特性の式を計算するのに 伝達関数H(z)が必要ということですか?

  • 離散時間伝達関数の因数分解

    次の離散時間伝達関数の式、 (1 + 0.2*z) * (1 + 0.2*z^-1) ---------------------------- (1 + 0.5*z) * (1 + 0.5*z^-1) を因数分解すると、次の4つの式、 (z + 0.2) --------- (z + 0.5) (1 + 0.2*z) ----------- (z + 0.5) (z + 0.2) ----------- (1 + 0.5*z) (1 + 0.2*z) ----------- (1 + 0.5*z) になるようですが、なぜこのようになるか、さっぱり分かりません。 お分かりになる方、お教えいただけないでしょうか、、 どうぞよろしくおねがいします。

  • 伝達関数H(z)を求める際の入力信号

    伝達関数H(z)を求める際の入力信号 Z変換を使って、 X(z)=H(z)Y(z)なる ある未知のシステムの伝達関数H(z)を求めたいのですが、 どなたか詳しい方がいらっしゃいましたら、ご回答お願いします。 <1> x(t)は任意シグナルを入力でき、y(t)が十分な分解能で得られるとすると、 x(t)にはどのような信号を入れるのが適当なのでしょうか。 (x(t)->X(z)、y(t)->Y(z)が可能として) ・ホワイトノイズのような信号が適当なのでしょうか? ・矩形波を入れた場合とホワイトノイズを入れた場合では結果は異なってくるのでしょうか? <2> Z変換を使わずにDFT(離散フーリエ変換)でも未知のシステムH(z)がある程度推定できるのでしょうか?その際に失われる情報はあるのでしょうか? (DFTのほうが手軽に行えるため、DFTで用途に足りるのであればこちらを使用したいと思っています) よろしくお願いいたします。

  • 伝達関数の位相の求め方

    フィードバック制御系の一巡伝達関数の G(s)=k/sT(1+sT)^2 の位相の答えが ∠G(jω)=-90-Atan(ωT) となるのですがどういう計算をしているのでしょうか?

  • Z変換についての疑問

    分母2次式、分子2次式の伝達関数をZ変換は可能ですが、逆数の関係が知りたいです。 G(s)→逆数→1/G(s)→Z変換→G^-1(z) G(s)→Z変換→G(z)→逆数→G^-1(z) これは成り立つのでしょうか? 一応適当な伝達関数で計算したのですがどうも成り立たないような。 G(s)=a/sのZ変換が可能だが G(s)=s/aのZ変換が不可能だから、の理由で納得できるのですが じゃぁ微分系のZ変換は不可能なのでしょうか? それならばPID制御器の離散化ができないと思うんですが。。 近似法などを用いてZ変換を行うのでしょうか?

  • LTICシステムの伝達関数について

    n次のLTICシステムを考えた場合、 N(D)y(t)=M(D)f(t) または {D^n+a_(n-1)D^(n-1)+…+a_1D+a_0}y(t)={b_nD^n+b_(n-1)D^(n-1)+…+b_1D+b_0}f(t) と定められ、上式をラプラス変換すると、その伝達関数H(s)は H(s)=M(s)/N(s) となるのですが、ここで気になったのが、M(D)とN(D)はどんなものなのでしょうか? M(D)は分子多項式でN(D)は分母多項式と言えばそうなのですが、その他に定義があるのかどうか気になったもので質問しました。 回答よろしくお願いします。

専門家に質問してみよう