• ベストアンサー
  • 困ってます

数学教えてください!

直角二等辺三角形ABCの直角の頂点Aを通り、この三角形の外角に直線Lをひき、BおよびCよりにLに垂線BD、CEをひくと、DE=BD+CEであることを証明せよ。 考え方、答え教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数112
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • komamy
  • ベストアンサー率62% (5/8)

△ABDと△CAE は合同です。 合同条件はBA=AC(直角二等辺三角形の2辺) ∠BAD=180°ー(90°+∠EAC)=∠ACE(直角三角形の内角の和、一直線は180°) ∠DAB=180°ー(90°+∠BAD)=∠EAC(直角三角形の内角の和、一直線は180°) よって1辺とその両端の角がそれぞれ等しいので△ABDと△CAE は合同 よってDE=DA+AE=BD+CE

共感・感謝の気持ちを伝えよう!

その他の回答 (2)

  • 回答No.2

間違ってたらごめん。自分で確認してね。 面倒なので、直角二等辺三角形の直角でない角は、45°ってのを書きながら説明しますね。 -------------------------------------------------- 点Bを通り、かつ、DEに平行な直線を引いてみてください。 仮にこの直線をZ1と呼びます。 直線Z1上で、BよりもE寄りにどこでもよいので点を設定し、点Y1と呼びます。 (直線Z1の役目はここまでです。) ∠CBY1の角度を仮に「X」とします。 (点Y1の役目はここまでです。) すると、三角形は二等辺三角形なので、∠ABDが求まります。 ∠ABDの角度は、45°-Xです。 点Cを通り、かつ、DEに平行な直線を引いてみてください。 仮にこの直線をZ2と呼びます。 直線Z2上で、CよりもD寄りにどこでもよいので点を設定し、点Y2と呼びます。 (直線Z2の役目はここまでです。) ∠BCAが45°なので、 ∠ACY2の角度は、45°-Xです。 (点Y2の役目はここまでです。) そしてこの角度は、∠CAEと同じですね。 ∠ABD=∠CAE ∠ADB=∠CEA AB=AC つまり、 △ABD=△CAE あとは、No.1が言うとおり。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • gohtraw
  • ベストアンサー率54% (1630/2966)

△ACEと△BADの合同を示せばCE=AD、DB=EAであることがいえるので DE=DA+AE=CE+DB であることも示せます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 中2数学です

    「直角二等辺三角形ABCの直角の頂点Aを通る直線に、頂点B,Cからそれぞれ垂線BH、CKをおろす。このとき、△ABH=△CAKであることを証明しなさい。」という中2の長男の問題が解けません。

  • 証明を教えてください!

    図の△ABCは、AB=ACの直角二等辺三角形である。辺BC上に点Dをとり図のように、AD=AEとなる直角二等辺三角形ADEをつくり、DEとACとの交点をFとする。 このとき「BD=CE」であることを証明しなさい。 という問題です。教えてください!

  • 中2 図形 証明問題

    この問題おしえください。かなり困っています・・・ 三角形ABCは角A=90度の直角二等辺三角形である。また、点D、Eはそれぞれ頂点Aを通る直線L上にあり、角BAD=角AEC=90度である。三角形BADと三角形ACEが合同であることを証明しなさい。 という問題です。

  • 数学(確率)得意な方!(> <)

    先日学校で出された確率の問題なのですが、「解ける人だけ解きなさい」ということで、答えだけ与えられました。少しチャレンジしてみたものの、残念ながら答えは全く合わず…(; ;)一体どうしてそうなるのか知りたくてたまりません! 【問】 円周を12等分した点を反時計回りの順にP1、P2、P3…P12とする。このうち異なる3点を選び、それらを頂点とする三角形を作る。 (1)このようにして作られる三角形の個数は【アイウ】個である。 また、このうち正三角形は【エ】個で、直角二等辺三角形は【オカ】個である。 (2)このようにして作られる三角形が、正三角形でない二等辺三角形になる確率は【キク/ケコ】である。また、直角三角形になる確率は【サ/シス】である。 (3)このようにして作られる三角形の形によって、次のように得点を定める。 正三角形のとき 5点 直角二等辺三角形のとき 3点 正三角形でなく直角二等辺三角形でもない二等辺三角形のとき 2点 直角二等辺三角形でない直角三角形のとき 1点 上のいずれでもないとき 0点 このとき、得点の期待値は【セ/ソ】点である。 答えは、【アイウ】220、【エ】4、【オカ】12、【キク/ケコ】12/55、【サ/シス】3/11、【セ/ソ】4/5 です。 どなたか御助け願いますm( )m!

  • 数学

    三角形ABCにおいて∠A>90°、BC=1とする。頂点Bから直線ACに垂線を下ろし、直線ACとの交点をDとする。また、頂点Cから直線ABに垂線を下ろし、直線ABとの交点をEとする。直線DEに頂点B,Cから垂線を下ろし、直線DEとの交点をそれぞれP、Qとする。∠ABC=α、∠ACB=βとおく。 (1)線分BP,EQの長さをα、βを用いてあらわせ。 (2)∠BAC=135°のとき、四角形PBCQの面積Sの最大値を求めよ。 とき方のヒントを教えてください!

  • 数学の証明問題について

    数学の証明の問題がわからないので質問させていただきます。 この問題の答えとできたら解き方も教えていただきたいです。 1.正三角形ABCの辺ACの中点をDとし、辺BCのCを超えた延長上に点EをCD=CEであるようにとれば、DB=DEである。 2.二等辺三角形ABCにおいてAB=ACとする。辺AC上の点をD、辺BCのCを超えた延長上に点EをCD=CEであるようにとったとき、DB=DEとなるのは、Dがどんな点の場合か。 3.問題2から次の問題を得る。△ABCにおいて、AB=ACとし、∠Bの二等分線とACとの交点をDとする。BCのCの超えた延長上に点Eを、CD=CEであるようにとればDB=DEである。 4.△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上の点をEとしたとき、DB=DEとなるのは、Eがどんな点の場合か。 5.問題4から次の問題を得る。△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上に点EをCE=1/2BCにとればDB=DEである。 6.直角二等辺三角形ABCにおいて∠A=90°とし、∠Bの二等分線とACとの交点をDとする。CからBDへの垂線の足をEとすれば、BD=2CEである。 以上、6個の問題です。 回答よろしくお願いしますm(_ _)m

  • 数学を教えてください!

    図で、四角形ABCDは∠ABC=124°の平行四辺形、△BECは∠CBE=90°の直角二等辺三角形、△DCFは∠FDC=90°の直角二等辺三角形である。このとき、次の問いに答えなさい。 △BAE≡△DFAであることを証明しなさい。 また、∠EAFの大きさを求めなさい。 考え方、答えを教えてください!

  • 確率

    円周を12等分した点を反時計回りの順にP₁、P₂、P₃……、P₁₂とする。このうち異なる3点を選び、それらを頂点とする三角形を作る。 (1)直角二等辺三角形の個数を求めよ。 (2)正三角形でない二等辺三角形になる確率を求めよ。 (3)直角三角形になる確率を求めよ。 (4)このようにして作られる三角形の形によって、次のように得点を定める。  正三角形のとき……5点  直角二等辺三角形のとき……3点  正三角形でなく直角二等辺三角形でもない二等辺三角形のとき……2点  直角二等辺三角形でない直角三角形のとき……1点  上のいずれでもないとき……0点 このとき得点の期待値を求めよ という問題です。続いている問題なので4問出させてもらいました。これ以外にも2問あってそれは解けましたがこの4題はわかりません。分かる方いらっしゃいましたらすみませんが解説よろしくおねがいいたします。

  • 数学 三角比

    三角形ABCにおいて、頂点Aから直線BCに垂直におろした垂線の長さは1、頂点Bから直線CAに下した垂線の長さは√2、頂点Cから直線ABに下した垂線の長さは2である。このとき、三角形ABCの面積と、内接円の半径、および外接円の半径を求めよ。

  • 数学図形

    中3です 下の図のABCは直角二等辺三角形、 頂点Aを通り辺BCに平行な直線状に点Dを取りBC=BDです。 角ABDを求めよという問題です。 わかる角度が45度、90度しかなくわかりません。 おねがいします。