エルデスシュトラウスの予測が証明できました。

このQ&Aのポイント
  • エルデス・シュトラウスはNを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると予想しました。
  • 具体的な例を挙げると、Nが偶数の場合と奇数の場合でそれぞれ式を導き出すことができます。
  • また、Nが4の倍数-1の場合と4の倍数-3の場合でも式を導くことができます。
回答を見る
  • ベストアンサー

エルデスシュトラウスの予測が証明出来ました。2

前回の投稿版は、最後が不完全でしたので、再考して投稿させてもらいます。 Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、1/N+(1/N+1)+(1/N(N+1))=2/N(2/N公式その1と呼ぶ)は常に成立します。 Nが偶数の時、2/N公式その1にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。(1/11)+(1/(11+1))+(1/(11×(11+1)))=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となり、求める式が出来ます。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/(9+1))+(1/(9×(9+1))=(1/3)+(1/10)+(1/(9×10)=(1/3)+(1/10)+(1/90)=40/90=4/9となり、求める式が出来ます。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います((3)の分母のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき、3n+2=11なので、3n=9、n=3を使います。(1/11)+(1/(3+1))+(1/(11×(3+1)))=(1/11)+(1/4)+(1/44)=16/44=4/11となり、求める式が出来ます。 次ぎに、N=3n+2でNが奇数の時です。Nは4の倍数-1、4の倍数-3の2通りがあります(N=4の倍数、N=4の倍数-2の時、何れもNは偶数となります)。 Nが4の倍数-1の場合、(N+1=4nの時)(1)式中のNの代わりに倍数nを使います。(2)式+(3)式は、(1/2Nn)+(1/2Nn)と変形します。2/N公式を1/n+(1/2Nn)+(1/2Nn)=2/N(2/N公式その2と呼ぶ)とします。例えばN=19の時、19+1=20=5×4なので、2/N公式その2に倍数5を使います。(1/5)+(1/(2×19×5))+(1/(2×19×5))=(1/5)+(1/190)+(1/190)=40/190=4/19となり、求める式が出来ます。 Nが4の倍数-3(4n-3とする)の場合、2N+N+1=2(4n-3)+(4n-3)+1=12n-8=4(3n-2)となり、2N+N+1は必ず4の倍数となります。2N+N+1を4で割った商である(3n-2)をPとします。即ち4P=2N+N+1です。その時、(1/P)+(1/2P)+(1/2NP)=2/N(2/N公式その3と呼ぶ)は常に成立します。 Pの代わりにP/2=pを使います。例えば、N=37の時、(37×2+37+1)/4=112/4=28=Pです。ですから、p=14を2/N公式その3に使います。(1/14)+(1/(2×14))+(1/(2×37×14))=(1/14)+(1/28)+(1/1,036)=(1/14)+(1/28)+(1/1,036)=(74+37+1)/1,036=112/1,036=4/37となり、求める式が出来ます。これで、2/N公式その1・2・3により、全てのNについて求める式が出来ました。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。 この方

質問者が選んだベストアンサー

  • ベストアンサー
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.2

N=25のとき 25=3*8+1=4*7-3 P=(2N+N+1)/4=(2*25+25+1)/4=19 Pは奇数だから P/2=pは整数でないから その方法では、予想を証明できません N=2nのとき 4/(2n)=[1/n]+[1/(n+1)]+[1/{n(n+1)}] N=3nのとき 4/(3n)=[1/n]+[1/(3n+1)]+[1/{3n(3n+1)}] N=3n+2のとき 4/(3n+2)=[1/(3n+2)]+[1/(n+1)]+[1/{(3n+2)(n+1)}] N=4n+3のとき 4/(4n+3)=[1/(n+1)]+[1/{(4n+3)(2n+2)}]+[1/{(4n+3)(2n+2)}] N=12(2n-1)+1=24n-11のとき 4/(24n-11)=[1/(9n-4)]+[1/{2(9n-4)}]+[1/{2(24n-11)(9n-4)}] となって予想は成立しますが、 N=12(2n)+1=24n+1のとき 予想が成立するかどうか未解決です。

その他の回答 (3)

  • 390131
  • ベストアンサー率0% (0/2)
回答No.4

補足説明をしておきます。catbirdより。 Nが4の倍数-3で、pが奇数の場合でも、Nが素数でなければ、N=L×Mとなります。4/N=4/(L×M)=(4/L)×(1/M)です。4/Lを2/N公式その1と2を使って求め、その分母にMを掛ければ出来ます。 例えば、N=49の時、(49×2+49+1)/4=148/4=37=Pとなり、2/N公式その3は使えません。しかし、4/49=4/(7×7)=(4/7)×(1/7)です。4/7は2/N公式その2より、(1/2)+(1/2×7×2)+(1/2×7×2)=(1/2)+(1/28)+(1/28)=(14+1+1)/28=16/28=4/7です。これに1/7を掛けると、(1/(2×7))+(1/(28×7))+(1/(28×7))=(1/14)+(1/196)+(1/196)=(14+1+1)/196=16/196=4/49となり、求める式が出来ます。 Nが素数で、24の倍数+1の場合が残りました。N=73・97・193・313・337・・・・です。その場合、Nより大きい16の倍数の内、最小の値であるAを求めます。そして、A/4=aとします。Aが求める(4/N)の分子で、N×aが分母です。 例えばN=73の時、A=80、a=20です。80/(20×73)=4/73=(1/73)(73/20)+(1/73)(7/20)=(1/73)(73/20)+(1/73)(2/20)+(1/73)(5/20)=(1/20)+(1/730)+(1/292)=(146+4+10)/2920=160/2920=4/73です。 同様にして、n=97の時、A=112、a=28なので、(1/97)(97/28)+(1/97)(15/28)=(1/97)(97/28)+(1/97)(1/28)+(1/97)(14/28)=(1/28)+(1/2716)+(1/194)=(97+1+14)/2716=112/2716=4/97です。 N=193の時、(1/52)+(1/5018)+(1/772)=(193+2+13)/10036=208/10036=4/193です。N=313の時、(1/80)+(1/12520)+(1/5008)=320/25040=4/313です。N=337の時、(1/88)+(1/7414)+(1/2696)=352/29656=4/337です。 この様に分子分母を設定すると、素数でかつN=24の倍数+1の場合、N=1/X+1/Y+1/Zと表現できます。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.3

参考: http://okwave.jp/qa/q6541035.html の A No.3

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

あれ? 前回 http://okwave.jp/qa/q6536114.html (catbird) と http://okwave.jp/qa/q6536088.html (390131) が同一だったように、 今回も http://okwave.jp/qa/q6541074.html (catbird) と http://okwave.jp/qa/q6541035.html (390131) が同一ですね。 どうなっているんだろう? http://okwave.jp/qa/q6541035.html (390131) の A No.1 (catbird) も、謎です。

関連するQ&A

  • エルデスシュトラウスの予想を証明しました。完成版

    前回掲載した証明方法は、説明が不十分のようなので補足する意味で、完成版を掲載します。 Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、1/N+(1/N+1)+(1/N(N+1))=2/N(2/N公式その1と呼ぶ)は常に成立します。 Nが偶数の時、2/N公式その1にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。(1/11)+(1/(11+1))+(1/(11×(11+1)))=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となり、求める式が出来ます。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/(9+1))+(1/(9×(9+1))=(1/3)+(1/10)+(1/(9×10)=(1/3)+(1/10)+(1/90)=40/90=4/9となり、求める式が出来ます。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います((3)の分母のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき、3n+2=11なので、3n=9、n=3を使います。(1/11)+(1/(3+1))+(1/(11×(3+1)))=(1/11)+(1/4)+(1/44)=16/44=4/11となり、求める式が出来ます。 次ぎに、N=3n+2でNが奇数の時です。Nは4の倍数-1、4の倍数-3の2通りがあります(N=4の倍数、N=4の倍数-2の時、何れもNは偶数となります)。 Nが4の倍数-1の場合、(N+1=4nの時)(1)式中のNの代わりに倍数nを使います。(2)式+(3)式は、(1/2Nn)+(1/2Nn)と変形します。2/N公式を1/n+(1/2Nn)+(1/2Nn)=2/N(2/N公式その2と呼ぶ)とします。例えばN=19の時、19+1=20=5×4なので、2/N公式その2に倍数5を使います。(1/5)+(1/(2×19×5))+(1/(2×19×5))=(1/5)+(1/190)+(1/190)=40/190=4/19となり、求める式が出来ます。 Nが4の倍数-3(4n-3とする)の場合、2N+N+1=2(4n-3)+(4n-3)+1=12n-8=4(3n-2)となり、2N+N+1は必ず4の倍数となります。2N+N+1を4で割った商である(3n-2)をPとします。即ち4P=2N+N+1です。その時、(1/P)+(1/2P)+(1/2NP)=2/N(2/N公式その3と呼ぶ)は常に成立します。 Pの代わりにP/2=pを使います。例えば、N=37の時、(37×2+37+1)/4=112/4=28=Pです。ですから、p=14を2/N公式その3に使います。(1/14)+(1/(2×14))+(1/(2×37×14))=(1/14)+(1/28)+(1/1,036)=(1/14)+(1/28)+(1/1,036)=(74+37+1)/1,036=112/1,036=4/37となり、求める式が出来ます。これで、2/N公式その1・2・3により、全てのNについて求める式が出来ました。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。 この方法で、1/X+1/Y+1/Zと表せないNがあったら教えてください。

  • エルデスシュトラウスの予想が、証明出来ました。

    Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 4/Nの塊を、1/Xと1/Yと1/Zとの3つに分ける事自体は簡単です。X・Y・Zが無理数でも良いのなら、適当に3分割すればよろしい。Nが如何なる2以上の自然数となっても、X・Y・Zには、小数点以下の端数が付いてはならない点が、この予想の証明の難しいところです。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、2/N=1/N+(1/N+1)+(1/N(N+1))(2/N公式と呼ぶ)は常に成立します。Nにさまざまな自然数を入れて見てください。この数式を基礎として、4/N=1/N+(1/N+1)+(1/N(N+1))が成立することを証明出来るでしょうか。 Nが偶数の時、2/N公式にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。2/11=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となります。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/10)+(1/90)=40/90=4/9となります。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います(分子のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき(1/11)+(1/4)+(1/44)=16/44=4/11となります。 次ぎに、N=3n+2でNが奇数の時です。2/N公式では、(2)+(3)は1/Nです。分母にどの様な自然数を掛けても、分子は1なので、要件を満たします。つまり、(2)+(3)は、1/2N・1/3N・1/4N・1/5N・1/6N・1/7N・・・と自由に選択出来ます。Nに1を足して4の倍数になる場合、(N+1=4nの時)(1)式中のNの替りに倍数nを使います。(2)+(3)式の分母には、自由に自然数を掛けられるので、倍数nを掛けます。(2)+(3)=1/Nn=(1/2Nn)+(1/2Nn)とします。例えばN=19の時、19+1=20=5×4なので倍数5を使います。(1/5)+(1/190)+(1/190)=40/190=4/19となります。 残ったのは、N=3n+2且つ、N=4n-3且つ、Nが奇数の時です。即ちN=12n+1の数列で、具体的には、13・25・37・49・61・85・97・109・・・です。 これらの数値(Rとする)は、2乗で表せます。13=2×2+3×3、25=3×3+4×4、37=6×6+1×1、49=7×7、61=5×5+6×6、85=9×9+2×2、97=9×9+4×4、109=10×10+3×3・・・等です。4/(Rの2乗)=(2/R)の2乗なので、この場合も2/N公式により、予想は成立します。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。

  • エルデスシュトラウスの予想が、証明出来ました。

    Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 4/Nの塊を、1/Xと1/Yと1/Zとの3つに分ける事自体は簡単です。X・Y・Zが無理数でも良いのなら、適当に3分割すればよろしい。Nが如何なる2以上の自然数となっても、X・Y・Zには、小数点以下の端数が付いてはならない点が、この予想の証明の難しいところです。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、2/N=1/N+(1/N+1)+(1/N(N+1))(2/N公式と呼ぶ)は常に成立します。Nにさまざまな自然数を入れて見てください。この数式を基礎として、4/N=1/N+(1/N+1)+(1/N(N+1))が成立することを証明出来るでしょうか。 Nが偶数の時、2/N公式にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。2/11=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となります。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/10)+(1/90)=40/90=4/9となります。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います(分子のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき(1/11)+(1/4)+(1/44)=16/44=4/11となります。 次ぎに、N=3n+2でNが奇数の時です。2/N公式では、(2)+(3)は1/Nです。分母にどの様な自然数を掛けても、分子は1なので、要件を満たします。つまり、(2)+(3)は、1/2N・1/3N・1/4N・1/5N・1/6N・1/7N・・・と自由に選択出来ます。Nに1を足して4の倍数になる場合、(N+1=4nの時)(1)式中のNの替りに倍数nを使います。(2)+(3)式の分母には、自由に自然数を掛けられるので、倍数nを掛けます。(2)+(3)=1/Nn=(1/2Nn)+(1/2Nn)とします。例えばN=19の時、19+1=20=5×4なので倍数5を使います。(1/5)+(1/190)+(1/190)=40/190=4/19となります。 残ったのは、N=3n+2且つ、N=4n-3且つ、Nが奇数の時です。即ちN=12n+1の数列で、具体的には、13・25・37・49・61・85・97・109・・・です。 これらの数値(Rとする)は、2乗で表せます。13=2×2+3×3、25=3×3+4×4、37=6×6+1×1、49=7×7、61=5×5+6×6、85=9×9+2×2、97=9×9+4×4、109=10×10+3×3・・・等です。4/(Rの2乗)=(2/R)の2乗なので、この場合も2/N公式により、予想は成立します。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。

  • 証明

    x,y,zを自然数として、p=(x^2)+(y^2)+(z^2)とする。 x,y,zがいずれも3の倍数でないならば、pは3の倍数である問題で nを3の倍数でない自然数とするとkを整数とすると どうしてn=3k±1と表すことが分かりません。

  • 整数問題の質問です。

    y-2z/x=z-3x/2y=y-6X/5zのとき、この式の値を求めよ。 という問題で、私は=kとおいて、分母を消したりしたのですが、全然式がきれいにならず、どう解くべきなのか分かりません!困っています。 あと、 nは自然数とする。x^nをx^2-x-2で割った時の余りを求めよ。 という問題は、二項定理を使うのかとは思いますが、それで解いたら答が全然違いました。答は 2^n-(-1)^nx/3+2^n+2(-1)^n/3でした。 解き方を教えてください!お願いします。

  • 「8の倍数に+3して15の倍数に」等の法則について

    8の倍数に3を足して、15の倍数にするとします。 式は 8x +3 = 15y  (x,yは整数) となると思います。 この式の場合、実際に計算していくと、以下のような法則が得られます。 (nは 0 または、自然数) x = 15n + 9 そのxから、yは y = 8n +5  と表すことが出来ると思います。 同様に、数字を変えて、「7の倍数に5を足して、11の倍数にする」を考えると、 7x + 5 = 11y x = 11n +4 y= 7n +3 となります。 今度は7x + 4 = 11yとしてみます。 すると、xとyはこうなります。 x = 11n +1 y= 7n +1 このようなことを、 『 ax + b = cyとした時、 x = ○n + ○○ ,y = △n + △△ 』 というように、文字を用いて表現することは可能ですか? 他にも、いろいろ値を変えて変化を確かめてみたりしたのですが、 11n +4などの値が、7x + 5 = 11yのどこから来ているのか全くわかりません。 10の倍数に1を足して100の倍数に、など、不可能な組み合わせもあるようで、訳がわかりません。 どうかよろしくお願いします。m(_ _)m

  • フェルマーの最終定理の代数での解答です。どうでしょう?

    X,Y,Z,Nを0でない自然数とします。 X+Y+Z=X+Y+X・・・・・・(1) (1)式の両辺に(X+Y+Z)を掛けて (X+Y+Z)^2=(X+Y+X)^2・・・・・・(2) (2)式の右辺を展開、整理して (X+Y+Z)^2 =(X+Z)^2+(Y+Z)^2+2XY-Z^2・・・・(3) (3)式は(2)式と同値で恒等式です。 (3)式において、2XY=Z^2の関係を満たす自然数X,Y,Zの組を選ぶとき、全てのピタゴラス数を網羅します。 この(3)式の両辺に(X+Y+Z)^(N-2)を掛けると次の式ができます。 (X+Y+Z)^N =(X+Z)^2*(X+Y+Z)^(N-2) +(Y+Z)^2*(X+Y+Z)^(N-2) +(2XY-Z^2)*(X+Y+Z)^(N-2)・・・・(4) (4)式も明らかに恒等式です。 この(4)式を、題意の解の有無が判定しやすいように整理します。 (X+Y+Z)^N =(X+Z)^N*{(X+Y+Z)/(X+Z)}^(N-2) +(Y+Z)^N*{(X+Y+Z)/(Y+Z)}^(N-2) +(2XY-Z^2)*(X+Y+Z)^(N-2)・・・・(5) (5)式も恒等式です。 (5)式は N=1のときは(1)式になり N=2のときは(3)式になり (3)式は前述のとおり 2XY=Z^2の関係を満たす自然数X,Y,Zの組で、全てのピタゴラス数を網羅します。 さて、(5)式において、N>2の場合、これは以下の条件のときにピタゴラス数の形に書けると考えられます。 {(X+Y+Z)/(X+Z)=1}∩{(X+Y+Z)/(Y+Z)=1}∩(2XY=Z^2)・・・・・・・(6) しかし、2XY-Z^2はともかく (X+Y+Z)/(X+Z)=1 と (X+Y+Z)/(Y+Z)=1 はありえないので N>2の場合は(5)式はピタゴラス数の形には書けない。 すなわち、N>2の場合はフェルマーの問題に解はない。 要約すれば以上なのですが、この証明を得るために、サンゴ礁数列という層状の数列を考えついてから約20年かけて、途中でインターネットで皆様に色々教えていただきながらここまできました。 自分ではこれで完了したと考えているのですが、私は数学の全くの素人でほんとうのところは分からないとも考えられます。 そこで、専門家の方のご意見をうかがいたいと、質問いたしました。 よろしくお願いいたします。 フェルマーさんはこのように自然数3個で等式の両辺を表現することを発見していたと思うのですが、どうでしょう?

  • フェルマーの定理の変形バージョン

    n>=3以上とするとき、 x^n+y^(n+1)=z^n を満たす自然数x,y,zは存在しますか? フェルマーの定理と違うところは、y^n ではなく、y^n*y=y^(n+1) となっているところです。 この公式を満たすxyzは存在しますか?

  • 背理法について

    x,y,zを自然数とし、P=(x^2)+(y^2)+(z^2)とする。 このときx,y,z,pがすべて素数ならば、x,y,zのうち少なくとも1つは3の倍数を証明する問題で 例えば p=3の倍数 …(1) x,y,zがすべて素数だと x≧2,y≧2,z≧2 P=(x^2)+(y^2)+(z^2)≧(2^2)+(2^2)+(2^2)≧1^2 …(2) (2)の≧1^2 が最後に付くのか分かりません。

  • 背理法

    x,y,zを自然数とし、P=(x^2)+(y^2)+(z^2)とする。 このときx,y,z,pがすべて素数ならば、x,y,zのうち少なくとも1つは3の倍数を証明する問題で 背理法を用いて、すべてが3でないとき x≠3,y≠3,z≠3、P≠3 と仮定して このとき、x,y,zがすべて素数であることから、x,y,z,pはいずれも3の倍数ではない。 この後どのように考えるのか分かりません。