• 締切済み
  • すぐに回答を!

整数問題の質問です。

y-2z/x=z-3x/2y=y-6X/5zのとき、この式の値を求めよ。 という問題で、私は=kとおいて、分母を消したりしたのですが、全然式がきれいにならず、どう解くべきなのか分かりません!困っています。 あと、 nは自然数とする。x^nをx^2-x-2で割った時の余りを求めよ。 という問題は、二項定理を使うのかとは思いますが、それで解いたら答が全然違いました。答は 2^n-(-1)^nx/3+2^n+2(-1)^n/3でした。 解き方を教えてください!お願いします。

noname#193660
noname#193660

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

一問めは、分子がどこまでか判り難い書き方だが… 普通に、y-(2z/x) のように読むと、 k の値は一意に定まらない。 そこで、強引に (y-2k)/x のように読めば、 型どおりの平易な問題となる。 =k と置いて、x,y,z の一次式として整理すると、 定数項が 0 の連立一次方程式が現れる。 これが、x=y=z=0 以外(でないと原式へ代入 できない)の解を持つようにしたい。 三連立方程式のうちの二本の式から x,y を z の式で表して それを第三の式へ代入すれば、 両辺が z で割れて、k だけの三次方程式になる。

共感・感謝の気持ちを伝えよう!

質問者からの補足

すみません!分かりづらい書き方していました! (Y-2z)/X で、かっこの中全てが分子です!あとも同じです。本当にすみません!

  • 回答No.1

>nは自然数とする。x^nをx^2-x-2で割った時の余りを求めよ。 余りをax+b、商をP(x)とすると、x^n=(x+1)*(x-2)*P(x)+(ax+b)→ f(x)=x^n-(ax+b)=(x+1)*(x-2)*P(x)である。 これはf(x)が(x+1)*(x-2)で割り切れることを示している。 従って、f(2)=f(-1)=0 → b=2^n-2a、b=(-1)^n+a だからこれを連立すれば、aとbの値は出る。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 二項係数に関する問題です

    (x+y)^nの展開式における6項目は112、7項目は7、8項目は1/4であるとき、x、y、nの値を教えてください。 二項係数に関する問題ということはわかるのですが、二項定理をどう使えば答えにたどり着くのかわかりません。宜しくお願いします。

  • 整数の問題?

    nを3以上の整数とする。x~(n-1)+x~(n-2)+・・・+x+1をx-1で割った余りは□アとなるから、x~(n)-1を  (x-1)~2で割った余りは□イである。 また、x~(n)-1をx~(2)-1で割った余りは、nが偶数のとき□ウであり、nが奇数のとき□エである。 □の中ア、イ、ウ、エに答を入れる問題ですが、自分の答はア:n イ:n(x-1) ウ:? エ:?となりました。 途中式も含めて解説をお願いできれば有り難いです。どうかよろしくお願いします。 、

  • マクローリン展開の問題について

    いまいち納得いかない問題があるので質問です。 √(1+x)のマクローリン展開は =1+1/2x-1/(2*4)x^2+・・・+(-1)^(n-1){(1*3・・・(2n-3)}*x^n/{(2*4・・(2n)}となると書いてあるります。確かに自分で拡張された二項定理から求めた一般式と↑の一般式は一致するのですが、 一般式のnにn=1,n=2・・・を代入して得られる値と、第二項、第三項・・の値は符号が逆になってしまいます。 これが何故こうなるのか納得できません。 どなたかご解答お願いします。

  • 整数の問題

    次の問題が解けなくて困っています。 nは自然数である。 (1)nが4の倍数のとき、n=x^2-y^2を満たす整数x,y(x>y≧0)があることを示せ。 (2)nが奇数のとき、n=x^2-y^2を満たす整数x,y(x>y≧0)があることを示せ。 どうか分かりやすい解説よろしくお願いします。

  • エルデスシュトラウスの予想が、証明出来ました。

    Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 4/Nの塊を、1/Xと1/Yと1/Zとの3つに分ける事自体は簡単です。X・Y・Zが無理数でも良いのなら、適当に3分割すればよろしい。Nが如何なる2以上の自然数となっても、X・Y・Zには、小数点以下の端数が付いてはならない点が、この予想の証明の難しいところです。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、2/N=1/N+(1/N+1)+(1/N(N+1))(2/N公式と呼ぶ)は常に成立します。Nにさまざまな自然数を入れて見てください。この数式を基礎として、4/N=1/N+(1/N+1)+(1/N(N+1))が成立することを証明出来るでしょうか。 Nが偶数の時、2/N公式にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。2/11=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となります。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/10)+(1/90)=40/90=4/9となります。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います(分子のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき(1/11)+(1/4)+(1/44)=16/44=4/11となります。 次ぎに、N=3n+2でNが奇数の時です。2/N公式では、(2)+(3)は1/Nです。分母にどの様な自然数を掛けても、分子は1なので、要件を満たします。つまり、(2)+(3)は、1/2N・1/3N・1/4N・1/5N・1/6N・1/7N・・・と自由に選択出来ます。Nに1を足して4の倍数になる場合、(N+1=4nの時)(1)式中のNの替りに倍数nを使います。(2)+(3)式の分母には、自由に自然数を掛けられるので、倍数nを掛けます。(2)+(3)=1/Nn=(1/2Nn)+(1/2Nn)とします。例えばN=19の時、19+1=20=5×4なので倍数5を使います。(1/5)+(1/190)+(1/190)=40/190=4/19となります。 残ったのは、N=3n+2且つ、N=4n-3且つ、Nが奇数の時です。即ちN=12n+1の数列で、具体的には、13・25・37・49・61・85・97・109・・・です。 これらの数値(Rとする)は、2乗で表せます。13=2×2+3×3、25=3×3+4×4、37=6×6+1×1、49=7×7、61=5×5+6×6、85=9×9+2×2、97=9×9+4×4、109=10×10+3×3・・・等です。4/(Rの2乗)=(2/R)の2乗なので、この場合も2/N公式により、予想は成立します。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。

  • エルデスシュトラウスの予想が、証明出来ました。

    Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 4/Nの塊を、1/Xと1/Yと1/Zとの3つに分ける事自体は簡単です。X・Y・Zが無理数でも良いのなら、適当に3分割すればよろしい。Nが如何なる2以上の自然数となっても、X・Y・Zには、小数点以下の端数が付いてはならない点が、この予想の証明の難しいところです。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、2/N=1/N+(1/N+1)+(1/N(N+1))(2/N公式と呼ぶ)は常に成立します。Nにさまざまな自然数を入れて見てください。この数式を基礎として、4/N=1/N+(1/N+1)+(1/N(N+1))が成立することを証明出来るでしょうか。 Nが偶数の時、2/N公式にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。2/11=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となります。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/10)+(1/90)=40/90=4/9となります。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います(分子のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき(1/11)+(1/4)+(1/44)=16/44=4/11となります。 次ぎに、N=3n+2でNが奇数の時です。2/N公式では、(2)+(3)は1/Nです。分母にどの様な自然数を掛けても、分子は1なので、要件を満たします。つまり、(2)+(3)は、1/2N・1/3N・1/4N・1/5N・1/6N・1/7N・・・と自由に選択出来ます。Nに1を足して4の倍数になる場合、(N+1=4nの時)(1)式中のNの替りに倍数nを使います。(2)+(3)式の分母には、自由に自然数を掛けられるので、倍数nを掛けます。(2)+(3)=1/Nn=(1/2Nn)+(1/2Nn)とします。例えばN=19の時、19+1=20=5×4なので倍数5を使います。(1/5)+(1/190)+(1/190)=40/190=4/19となります。 残ったのは、N=3n+2且つ、N=4n-3且つ、Nが奇数の時です。即ちN=12n+1の数列で、具体的には、13・25・37・49・61・85・97・109・・・です。 これらの数値(Rとする)は、2乗で表せます。13=2×2+3×3、25=3×3+4×4、37=6×6+1×1、49=7×7、61=5×5+6×6、85=9×9+2×2、97=9×9+4×4、109=10×10+3×3・・・等です。4/(Rの2乗)=(2/R)の2乗なので、この場合も2/N公式により、予想は成立します。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。

  • 整数問題です

    nが自然数のとき、5^6n + 5^4n + 5^2n + 1を13で割った余りを求めよ という問題で、 解)(mod13)とする   5^2=25≡-1より   (与式)≡(5^2)^3n + (5^2)^2n + (5^2)^n + 1      ≡(-1)^3n + (-1)^2n + (-1)^n +1      ≡2(-1)^n +2      ≡4 (n:偶数),       0 (n:奇数) というものなのですが、 4行目まではわかるのですが、 5行目の 『 ≡2(-1)^n +2』 になる理由がわかりません>< わかる方、ぜひおしえてください。

  • 整数問題(なのかな?) 【意外と長文です】

    こんにちは。 今回質問させていただくものは、『整数問題』らしき問題です。 以下の問題です。 (1) nを整数とする。n^2を5で割った余りを求めよ。 (2) mを整数とする。方程式  x^2+4x-5m+2=0を満たす整数xは存在しないことを 証明せよ。 簡単に自分の(つぶれた)アイデアを参考程度に載せておきます。 (1) たぶん剰余の定理の応用問題だと思われます。 よって、n=5k,5k+1,5k+2,5k+3,5k+4 なんて置いてあげて解く “気がします”がその後どのように余りを求めるか分かりません。 (そもそもこの考えも怪しいですし・・・悲) (2) きっと因数定理の考え方(概念?)が役に立つのかな?と思っています。 思っているだけで、こちらはどのように解けばいいのか意味不明。 (たった今)書いている途中で思いついたのは、 判別式を負にすると、mが不適な値が出るのかも!!と思って改めて解こうとしたら、一瞬で破壊されました。(笑) 方針等、ご指導ください。

  • エルデスシュトラウスの予想を証明しました。完成版

    前回掲載した証明方法は、説明が不十分のようなので補足する意味で、完成版を掲載します。 Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、1/N+(1/N+1)+(1/N(N+1))=2/N(2/N公式その1と呼ぶ)は常に成立します。 Nが偶数の時、2/N公式その1にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。(1/11)+(1/(11+1))+(1/(11×(11+1)))=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となり、求める式が出来ます。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/(9+1))+(1/(9×(9+1))=(1/3)+(1/10)+(1/(9×10)=(1/3)+(1/10)+(1/90)=40/90=4/9となり、求める式が出来ます。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います((3)の分母のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき、3n+2=11なので、3n=9、n=3を使います。(1/11)+(1/(3+1))+(1/(11×(3+1)))=(1/11)+(1/4)+(1/44)=16/44=4/11となり、求める式が出来ます。 次ぎに、N=3n+2でNが奇数の時です。Nは4の倍数-1、4の倍数-3の2通りがあります(N=4の倍数、N=4の倍数-2の時、何れもNは偶数となります)。 Nが4の倍数-1の場合、(N+1=4nの時)(1)式中のNの代わりに倍数nを使います。(2)式+(3)式は、(1/2Nn)+(1/2Nn)と変形します。2/N公式を1/n+(1/2Nn)+(1/2Nn)=2/N(2/N公式その2と呼ぶ)とします。例えばN=19の時、19+1=20=5×4なので、2/N公式その2に倍数5を使います。(1/5)+(1/(2×19×5))+(1/(2×19×5))=(1/5)+(1/190)+(1/190)=40/190=4/19となり、求める式が出来ます。 Nが4の倍数-3(4n-3とする)の場合、2N+N+1=2(4n-3)+(4n-3)+1=12n-8=4(3n-2)となり、2N+N+1は必ず4の倍数となります。2N+N+1を4で割った商である(3n-2)をPとします。即ち4P=2N+N+1です。その時、(1/P)+(1/2P)+(1/2NP)=2/N(2/N公式その3と呼ぶ)は常に成立します。 Pの代わりにP/2=pを使います。例えば、N=37の時、(37×2+37+1)/4=112/4=28=Pです。ですから、p=14を2/N公式その3に使います。(1/14)+(1/(2×14))+(1/(2×37×14))=(1/14)+(1/28)+(1/1,036)=(1/14)+(1/28)+(1/1,036)=(74+37+1)/1,036=112/1,036=4/37となり、求める式が出来ます。これで、2/N公式その1・2・3により、全てのNについて求める式が出来ました。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。 この方法で、1/X+1/Y+1/Zと表せないNがあったら教えてください。

  • 数学Aの問題の解説をわかりやすくお願いします。

    二項定理を用いて、次のことを示せ X>0のとき(1+x)^n > 1+nx、ただしnは2以下の自然数