• ベストアンサー
  • すぐに回答を!

部分積分がわかりません

部分積分の問題で ∫log2x dx という問題がどうしても解けません。どのように解いていけば良いのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数4175
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

>∫log2x dx これば次の自然対数の積分ですか? ∫log(2x) dx そうであれば、部分積分で積分すればいいです。 ∫log(2x) dx =∫1*log(2x) dx =x*log(2x)-∫x*(log(2x))' dx =x*log(2x)-∫x*(1/x) dx =x*log(2x)-∫1 dx =x*log(2x)- x +C =x{log(2x)-1} +C

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど!解くことが出来ました。 ありがとうございます。

関連するQ&A

  • 部分積分法の問題について教えてください!!

    今、「部分積分」の問題を解いて不明な点があるので教えてください! 【問題】∫log(x+1)dx 【解答】 =∫1・log(x+1)dx =(x+1)log(x+1)-∫(x+1)×1/(x+1)dx =(x+1)log(x+1)-∫1dx =(x+1)log(x+1)-x+C 上記の解答で、部分積分法の公式「∫f(x)g´(x)dx=f(x)g(x)-f´(x)g(x)dx」を利用するために、【解答】の1行目に1を置いてるのは分かります。 しかし、2行目公式のg(x)にあたる部分(2行目の最初の(x+1)と-∫以降の(x+1))が何処から来た値なのか分かりません。 説明が不十分だと思いますがよろしくお願いします。

  • 部分積分法

    部分積分法にて解きましたが途中計算のどこかが間違っており答えにたどり着きませんでした。 ミスした箇所を教えていただけると嬉しいです。 ∫x^(2) (e^x) dx = x^(2) ・-e^(-x) - ∫2x・-e^(-x) dx = -x^(2)・e^(-x) + 2∫xe^(-x) dx  ・・・(1) ----------------------- 上記の式の∫xe^(-x) dx について積分 ∫xe^(-x) dx = -xe^(-x) - ∫-e^(-x) dx = -xe^(-x) + e^(-x) dx これを(1)の部分に当てはめる = -x^(2)・e^(-x) + 2{ -xe^(-x) + e^(-x) } = -x^(2)・e^(-x) - 2xe^(-x) + 2e^(-x) = -{x^(2) + 2x - 2 }e^(-x) + C     ← 答え しかし解答は  -{x^(2) + 2x + 2 }e^(-x) + C になります。私の回答とは +2 と-2の違いなのですが、 どこから、差がでているのかがわかりませんでした。

  • 部分積分

    部分積分の問題です。 ∫x^2ln(x^2+1) dx =1/3x^3ln(x^2+1) - ∫(x^3/3)*(2x/(x^2+1))dx ここまではあっていると思うのですが  これからどうしたらよいのか分りません。   この後どうしたらよいのでしょうか? お願いいたします。

  • 部分積分の疑問

    部分積分とは、部分的に積分するものですよね。全体を積分しなくてもいいんでしょうか。 { f( x )g( x ) } ′ = f ' ( x )g( x )+f( x ) g ' ( x ) の両辺を積分し,式を整理すると, ∫ { f( x )g( x ) } ' dx =∫ { f ' ( x )g( x )+f( x ) g ' ( x ) }dx f( x )g( x )=∫ f ' ( x )g( x ) dx+∫f( x ) g ' ( x )dx ∫f( x ) g ' ( x )dx =f( x )g( x )-∫f ' ( x )g( x ) dx となり,部分積分法の公式が求まる。 とあるのですが、f( x )g( x )を求めなくてはいけないのでは、と思ってしまうのですが。

  • 部分積分法で定積分を求めたいのですが~

    問題集を解いていますが、3つ分からない問題がありました。 部分積分法で求めた時の途中式~答えまでの流れを教えてください。 お手数ですが、宜しくお願いします。 (1) ∫(0→π/2) x cos2x dx (2) ∫(0→π/4) x^(2) sin2x dx (3) ∫(0→2π) e^(x) cos x dx 答え (1) -1/2 (2) π/8 - 1/4 (3) { e^(2π)-1 } / 2

  • 部分積分

    ∫x^2exp(-x^2/2)dxの部分積分についてです。 ∫x^2(-1/x・exp(-x^2/2))dxについて積分すればいいと思うのですが この積分により求められる第二項が2∫exp(-x^2/2)dxになってしまい回答と合いません、解答によると第二項は∫exp(-x^2/2)dxになるようなのですが何度やってもどこで間違っているのかがわかりません。 どなたか詳しく教えていただけないでしょうか。

  • 部分積分法について

    今部分積分法をべんきょうしているのですが 例えばlog(X+2)などのg´の部分が1の時gを f´gが積分できるようにしなければいけませんよね? そのgの求め方を教えてください><

  • 部分積分の問題

    すみません、下の積分の解き方を教えて頂きたいです。 ∫e^(x) cos(x) dx 部分積分で解くんだと思うのですが・・

  • 部分積分

    問題に ∫(-∞→∞)(x*e^(-(x^2)/2))dx このような積分があり 解説には ∫(-∞→∞)(x*e^(-(x^2)/2))dx =[-e^(-(x^2)/2)](-∞→∞)=0 というのがありました。 [-e^(-(x^2)/2)](-∞→∞)=0 この計算に問題はないのですが その前の ∫(-∞→∞)(x*e^(-(x^2)/2))dx =[-e^(-(x^2)/2)](-∞→∞) の意味がわかりません。 部分積分をしようとしているのはわかるのですが、どのように変形すればいいのかいまいち理解できないのですが、ご教授よろしくお願いします。

  • 部分積分.

     L ∫ {d/dx(E du/dx)+f}δudx=0  0 の部分積分をお願いします. ただし,  δu=0 u=0  E du/dx =T/A  (x=0) です.