• ベストアンサー
  • 困ってます

四角形ABCDは平行四辺形、Eは辺AD上の点で、EB=BCである。また

四角形ABCDは平行四辺形、Eは辺AD上の点で、EB=BCである。また、Fは線分BE上の点で、∠EBA=∠BCFである。次の問いに答えなさい。 (1)△ABE≡△FCBであることを証明しなさい。 (2)平行四辺形ABCDの面積が90cm2で、AE:ED=1:2のとき、△FCDの面積を求めなさい。 (1)はわかりましたが、(2)がわかりません。よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数340
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

すみません △EBDです

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほどわかりました。順序立てて求めていかねければいけないのですね。 ありがとうございました。

関連するQ&A

  • 平行四辺形の問題がわかりません

    平行四辺形ABCDがある。AB=AE=ECとなるような点EをBC上にとる。 AEの中点をFとする。∠BAE=40°とする (1)∠AEDを求めよ (2)三角形DFEの面積をSとしたとき、平行四辺形ABCDをSを使った式で表せ。 AB=AEだから△ABEは二等辺三角形 よって∠ABE=∠AEB=70 平行四辺形だから∠ABE=∠ADC=70、∠BAD=∠BCD=110 ∠BAD=110-40=70 よって四角形AECDは台形になる・・・あれ? ここで詰まってしまいました。 よろしくお願いいたします。

  • 平行四辺形の面積

    平行四辺形ABCDがある。辺AD、BC上にAE:ED=CF:FB=1:3となる点E、Fをとる。線分EFと対角線BDとの交点をGとする。 平行四辺形ABCDの面積は、四角形ABGEの面積の何倍ですか? という問題です。 わからなかったので解答を見たら次のように書いてありました。 四角形ABGE=△ABG+△AGE=1/4(平行四辺形ABCD)+1/4×1/4(平行四辺形ABCD) =5/16(平行四辺形ABCD) となっていました。 四角形ABGE=△ABG+△AGEまではわかるのですが、それ以降の式がわかりません。 すいませんが詳しい解説をお願いします。 どうして、1/4(平行四辺形ABCD)+1/4×1/4(平行四辺形ABCD)の式が出てきたのですか?

  • 平行四辺形の問題です。

    平行四辺形ABCDがあります。 辺ABを2:3に分ける点E、線分DEと対角形ACの交点をF、ACの中点をGとします。この時次の問いに答えなさい。 (1) AF:FGをもっとも簡単な整数比で答えなさい。 (2) 平行四辺形ABCDの面積は△AEGの面積の何倍ですか?

その他の回答 (1)

  • 回答No.1

AE:ED=1:2で平行四辺形ABCDの面積90cm2なので△ABEは15cm2 △FCBも15cm2 △ECDはAE:ED=1:2より30cm2 よって残りの△ECFは30cm2になります。 △FCB:△EBC=15:45=1:3 辺BF:FE=1:2 △EFD=30×(2/3)=20 △FCD=平行四辺形ABCD-(△ABE+△FCB+△EFD) =90-(15+15+20)=40cm2

共感・感謝の気持ちを伝えよう!

質問者からの補足

△EFD=30×(2/3)=20 この意味がよくわからないのですが、30×の30はどこの面積でしょうか?説明お願いできますか?

関連するQ&A

  • 平行四辺形ABCDにおいて、

    平行四辺形ABCDにおいて、△BPOの面積を3としたときの平行四辺形ABCDの面積を求めよ。 解き方が分からないのですが、 解き方を教えていただけませんか><?

  • 平行四辺形について

    平行四辺形ABCDの各辺の中点を図のようにE,F,G,Hとし、線分AG,CEと線分BH,DFとの交点をK、M,Nとする。このとき、四角形KLMNの面積は四角形ABCDの面積の何倍か。 面積の図は(頂点は)左上から下、右、に回って A,E,B,F,C,G,D,H 真中の平行四辺形は右から下と言う順でL,M,N,K 全体的にどのように求めるかわからないのですが、 特に、AK=2EL、EL=NG についてどうして成り立つのかがよくわかりません。

  • 平行四辺形ABCDにおいて、辺AB,辺CDをそれぞれ3:1にわける点を

    平行四辺形ABCDにおいて、辺AB,辺CDをそれぞれ3:1にわける点をそれぞれE,Fとする。 (例:AE=3,EB=1) EF,AFが対角線BDと交わる点をそれぞれG,Hとするとき、次の線分の比の求めよ。 (1)BH:HD (2)GH:BD この問題の回答及び解説をお願いしたいです。 よろしくお願いします。

  • 平行四辺形の面積比

    四角形abcdは面積30センチ平方キロメートルの平行四辺形であり、点e、fはそれぞれ辺辺cd、ad野中点である。線分aeと線分bfの交点をg、線分aeと線分bdの交点をhとするとき、三角形afgと三角形bghの面積比を求めよ。ただし、小学校で学習する知識で解くこと。 という問題がレポートで出たのですがわかりません

  • 平行四辺形について

    平行四辺形ABCDを対角線BDで折り返し、Aに対応する点をEとし、BCとDEの交点をFとする。また、ABとCEをそれぞれ延長したときの交点をGとする。このとき次の問いを答えなさい。 (1)△FBEと△FDCが合同であるとことを証明しなさい。 これはできたのですが (2)BF:FC=2:1であるとき、△FECの面積と平行四辺形ABCDの面積の比を、もっとも簡単な整数の比で表しなさい。 この問題が分かりませんでした。解答をみると・・・ 考えとしては△FECの面積=1として考えました。 そうすると△BEF=2となりますよね。 ここまでは納得。 次に △BFD=4となり、△DFC=2となり、△BCD=6より平行四辺形ABCD=12となると書いてありました。 この部分の△BFD=4となるところが分かりませんでした。この部分の解説をお願いします。 また、四角形BGCDは平行四辺形になるのですか?もし、平行四辺形になるとしたらどうしてなるのですか?解説をお願いします。

  • 相似を使った平行四辺形の面積

    相似を使った平行四辺形の面積についての質問です。 「平行四辺形ABCDの辺AD上に三等分点E、Fをとり、BとEを結ぶ。対角線ACと線分BEとの交点をP、対角線ACと対角線BDとの交点をOとする。平行四辺形ABCDの面積が48のとき、三角形BOPの面積はいくらか。」 △ABD:△ABE=3:1、△APE:△PBC=1:3までは、相似比で求められたのですが そこから先がよくわからなくなってしまいました。 よろしくお願いします。

  • 平行四辺形の対角線の交点を頂点とする三角形の面積

    中1の数学の問題です。(回答解説をお願いします。) 図において、四角形ABCDは平行四辺形で、ACとBDの交点をOとし、辺AB上でAE:EB=1:2となる点をE、辺AD上でAF:FD=2:1となる点をFとします。また、EOとDC、FOとBCの交点をそれぞれG、Hとします。 (1)四角形EHGFは平行四辺形であることを証明しなさい。 (2)四角形ABCDの面積をSとするとき、△EFOの面積をSを用いて表しなさい。 よろしくお願いします。

  • 平行四辺形の問題です

    前の続きなのですが・・・。 平行四辺形ABCDがあり辺ABを2:3に分ける点E、線分DEと対角線ACの交点をF 対角線ACの中点をGとします。 平行四辺形ABCDの面積は△AEFの面積の何倍ですか? この問題なのですが、中学生レベルでの考え方と答えをお願いします。

  • 平行四辺形の面積

    図の平行四辺形ABCDにおいて、点Eは辺BCの中点であり、CF:FD=1:2である。 △CFEの面積が1平方センチメートルのとき、 (1)△ABE、△AFDの面積はそれぞれいくらになるか。 (2)△AEFの面積は、平行四辺形ABCDの面積は何倍か。 今回もわがままなんですが、解き方等を詳しく教えていただけるとうれしいです。。 今日中にお願いします!

  • 座標平面上に平行四辺形ABCDがある。A(-1,4)B(-3,-2)C

    座標平面上に平行四辺形ABCDがある。A(-1,4)B(-3,-2)C(3,-1)D(5,5)のとき、平行四辺形ABCDは点対称な図形である。対称の中心の座標を求めなさい。 また、平行四辺形ABCDの面積を求めなさい。ただし、座標軸の1めもりを1cmとする。 この2問です。 分かる方、よろしくお願いします。