• ベストアンサー

積分について

積分について (1/√(2π))∫(-∞から3)exp[-t^2/2]dt の積分をお願いします。 積分がマイナスになるはずがないのにマイナスになってしまいます。 exp[-t^2/2]の微分は-t*exp[-t^2/2]だから exp[-t^2/2]の積分は(-1/t)*exp[-t^2/2]ですよね? 微分があってるのか不安です。 解説をお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

>exp[-t^2/2]の積分は(-1/t)*exp[-t^2/2]ですよね? いいえ、違います。 この積分は解析的に出来ない積分ですので、数値積分でないと積分できません。 有名な正規分布の積分なので、数値計算で求めた正規分布表が教科書やネット上に用意されています。数値積分サイトもネット上にありますし、Microsoft Excelの関数として数値積分値を計算してくれます。 例えば次のURL http://econom01.cc.sophia.ac.jp/stat/normprob.htm の左側を使って 正規分布[平均μ=0, 標準偏差σ=1 ],変数値(積分の上限)A=3 として[計算]ボタンを押せば積分結果として  左側確率 P{ x < 3 } = 0.99865010196837 として計算してくれます。 つまり (1/√(2π))∫(-∞から3)exp[-t^2/2]dt=0.99865010196837 となります。

noname#191921
質問者

お礼

ありがとうございました。

すると、全ての回答が全文表示されます。

その他の回答 (1)

noname#121794
noname#121794
回答No.1

言っちゃ悪いけど全くの勘違いがなされていて、微分ができていないようだ。 >>exp[-t^2/2]の積分は(-1/t)*exp[-t^2/2]ですよね? 恥をかけ!  (-1/t)*exp[-t^2/2]を微分したらexp[-t^2/2]になるのか。

すると、全ての回答が全文表示されます。

関連するQ&A

  • 積分(急いでます,焦ってます)

       ∫{(t)^(-1/2)・exp(-kt)}dt の積分がわかりません。部分積分をやってみたのですが,どうも上手くいきません。 あと,    ∫{erf(kt)^(1/2)}dt の積分方法をしていたら教えてください。

  • 不定積分

    ベッセル関数のPDF資料を見ていて、以下の不定積分がでてきました。 int_ { exp(-t*t) } dt = exp(-t*t) / (-2t) - int_ { exp(-t*t) / (2 * t * t) } dt ここでint_は積分記号を表し、expは指数を求める計算です。 不定積分の式 u'v = uv - int_ { u v' } を使って解こうとしたのですが、うまくいきませんでした。 よろしくお願いいたします。

  • 積分がわかりません

    ∫ log t[exp{-(t logt - t)} ] dt の積分ってどうなりますか。教えてください。

  • すこしやりがいのある積分の微分

    この積分をtで微分する問題です.        ∞ W(t)=∫exp(-rs)*R(s)ds    t です. 僕の考えとしては, まず,定積分を求め,tの変数として求めてから, tで微分すると思います. つまり,exp(-rs)部分は,∞で,0となり,計算がしやすくなるはずです.しかし,∫の中身がsに関する合成関数なのです.部分積分をやったり,いろいろ試したのですが,複雑に考えてしまい,できませんでした. 最終的に証明したい結果は, 上記積分を,tで微分すると, ∴ r=R/W+{(dW/dt)/W} ※(dW/dt)は,Wのドットです. となる関係を導出したいわけです. この関係は答えです. どうぞ,よろしくお願いします.

  • e^-1/Tの積分

    現在、次のような微分方程式を解かなければならず、 悪戦苦闘しています。 dx/dT=k/a*exp(-E/RT)*(1-x) この式のうち、k,a,E,Rは定数で既知なので、無視すると、 dx/dT = exp(-1/T)*(1-x) という微分方程式になります。 私はこの式をxとTの変数分離型の微分方程式と捉えて次のように変形しました。 dx/(1-x) = exp(-1/T)dT これの両辺を積分するのですが、左辺は ln{1/(1-x)} という答えになるのがわかるのですが、右辺の ∫exp(-1/T)dT という積分が解けません。 どなたか教えていただけませんでしょうか。 よろしくお願いいたします。

  • 広義積分の計算

    エルミート多項式が完全正規直交系であることを示す途中の式で、      ∫exp(-t^2/2)dt 積分区間は t∈[-∞,∞] の積分計算の方法が分かりません。どなたか教えていただけませんか?よろしくお願いします。

  • 積分について

    ∫_0^∞ t^(-3/2) exp{-t^(-1)}dt はどうすれば求めらますか(それとも求められないのでしょうか)。

  • 「積分法」の式変形がよくわかりません。

    現在、「積分法」の分野を勉強していますがわからない問題があります。これは大学受験用参考書に載っている問題です。どなたかおわかりになる方がいらっしゃれば教えていただきたいと思います。宜しくお願いいたします。 問題は 関数S(1→x){(2-t)logt}dt(1≦x≦e)の最大値、最小値を求めよ。です。 S(1→x)は積分範囲を示しています。 私は、 当然のことながら、これを微分するので、部分積分をしました。Logtを微分するので、(2-t)を積分しました。そして、] [(2t-t^2/2)logt]-S(2t-t^2/2)(1/t)dt と解いたのですが、 解答でも部分積分をしているのですが、解答では、、 (2-t)の微分が{-(2-t)^2}/2となっていて、 [{-(2-t)^2}/2*logt]-S{-(2-t)^2}/2 (1/t)dt となっていました。 {-(2-t)^2}/2を逆に微分してみると確かに(2-t)にはなるのですが、 素直に計算すれば、(2t-t^2/2)となると思います そこで質問なのですが、このような変形はよくあるのでしょうか? どういう目的でこのような変形をしているのでしょうか?この後の解法を読んでもその意図がわかりません。 式がわかりにくい書き方ですいません。 私の勉強不足なのですが質問する人がいないため、困っています。どなたかご存知の方がいらっしゃれば、教えていただきたいと思います。また説明不足の点があれば補足させていただきますので宜しくお願いいたします。

  • 部分積分法について

    微分方程式の問題を解いているときに出てきた式 ∫(logt/t)×(1/t)dt を部分積分法で解くと (-1/t)logt+∫(1/t)(1/t)dt となるらしいのですが、自分で解くと ∫(logt/t)dt であることから解がlogtとなり、部分積分の公式に代入すると「+」よりも前の式が (1/t)logt というように「-」が付きません 以上の解き方は間違っているのでしょうか? 正しい解き方を教えてください

  • 微分回路における微分方程式の解

    微分回路では入力、出力電圧をそれぞれVi、Voとすると dVo/dt + Vo/RC = dVi/dt    (1) という微分方程式が成り立ちます。これを解くと Vo = Vi×exp(-t/RC) になるらしいのですが、(1)の微分方程式を解くことができません。 積分回路の微分方程式 dVo/dt + Vo/RC = Vi/RC は変数分離によって Vo = Vi(1 - exp(-t/RC)) という解が求まったのですが。 (1)の微分方程式の解き方を教えてください。よろしくお願いします。

投資信託の移管についての質問
このQ&Aのポイント
  • 投資信託の移管方法とは?
  • sbiと楽天での投資信託保有をまとめる方法
  • 投資信託の移管手続きの注意点
回答を見る