線積分問題に関する解明と解法

このQ&Aのポイント
  • 線積分問題の解法とその証明について詳しく解説します。
  • 線積分問題におけるC^1級写像とその性質について説明します。
  • 点列を用いた線積分問題の収束性に関する証明を紹介します。
回答を見る
  • ベストアンサー

線積分の問題ですが、手がつけられません…。

線積分の問題ですが、手がつけられません…。 R^2の各点(x,y)をf(x,y)=(u(x,y),v(x,y))∈R^2に写すC^1級写像f:R^2→R^2が、任意の(a,b)∈R^2に対して、 max{|u_x(a,b)|,|u_y(a,b)|,|v_x(a,b)|,|v_y(a,b)|}≦c を満たすと仮定する。cは点(a,b)の選び方によらない正定数でc<1/2をみたす。また各(a,b)∈R^2に対し、||(a,b)||=√(a^2+b^2)とおく。 (1)γ:[0,1]→R^2をγ(t)=(x(t),y(t)),t∈[0,1]で表される1対1のC^1級写像で、γによる区間[0,1]の像が、2点γ(0),γ(1)を結ぶ線分となっているものとする。次を示せ。 |u(γ(1))-u(γ(0))|≦∫√(u_x(γ(t))^2+u_y(γ(t))^2)√(x'(t)^2+y'(t)^2)dt (0≦t≦1) (2)任意のP,Q∈R^2に対して||f(P)-f(Q)||≦2c||P-Q||を示せ。 (3)P_0をR^2の1点とし、点列{P_n;n=0,1,2,...}を P_(n+1)=f(P_n),n=0,1,2,... で定める。この点列がR^2の収束点列であることを示せ。 (1)はuとγがどのようにつながっているのかが分かりません。 (2)はノルムの処理がうまくいきません。 (3)は(2)を使う事はわかるんですが、ここもノルムから収束点列へ繋げられません。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • fef
  • ベストアンサー率64% (16/25)
回答No.1

方針だけ書きます. (1) 左辺を積分で表現すれば,   |u(gamma(1)) - u(gamma(0))|   = |int_0^1 (u_x(gamma(t)) x'(t) + u_y(gamma(t)) y'(t)) dt|   <= int_0^1 |u_x(gamma(t)) x'(t) + u_y(gamma(t)) y'(t)| dt となりますね. 後は,被積分函数に関してSchwarzの不等式を使えばよいでしょう. (2) ノルム ||*|| の定義より   ||f(P) - f(Q)|| = sqrt(|u(P) - u(Q)|^2 + |v(P) - v(Q)|^2) が成り立つことに注意して,不等式   |u(P) - u(Q)|^2 <= 2 c^2 ||P - Q||^2,   |v(P) - v(Q)|^2 <= 2 c^2 ||P - Q||^2 を示すことを考えます. 2点 P, Q を結ぶ線分をパラメタライズして gamma(t) を構成し,(1)の結果を用いましょう. 与えられた条件   max{|u_x(a,b)|, |u_y(a,b)|, |v_x(a,b)|, |v_y(a,b)|} <= c を途中で使えば,示したい不等式が出てきます. (3) R^2 空間が完備であることから,任意のCauchy列が収束することを示せばよいですね. (2)の結果を用いれば,これを示すことができます.

harumaaa
質問者

お礼

ありがとうございました

その他の回答 (1)

  • fef
  • ベストアンサー率64% (16/25)
回答No.2

回答1の訂正です. (3)の説明中の「任意のCauchy列が収束することを示せばよい」は, 「点列 {P_n} がノルム ||*|| に関してCauchy列であることを示せばよい」と読み替えてください.

関連するQ&A

  • 線積分の問題です。

    線積分の問題です。 (x,y)をf(x,y)=(u(x,y),v(x,y))∈R^2に写すC^1級写像f:R^2→R^2が、任意の(a,b)∈R^2に対して、 max{|u_x(a,b)|,|u_y(a,b)|,|v_x(a,b)|,|v_y(a,b)|}≦c を満たすと仮定する。cは点(a,b)の選び方によらない正定数でc<1/2をみたす。また各(a,b)∈R^2に対し、||(a,b)||=sqrt(a^2+b^2)とおく。 γ:[0,1]→R^2で |u(γ(1))-u(γ(0))|≦int_0^1{sqrt(u_x(γ(t))^2+u_y(γ(t))^2)sqrt(x'(t)^2+y'(t)^2)}dtは成立している 任意のP,Q∈R^2に対して||f(P)-f(Q)||≦2c||P-Q||を示せ。 という問題で、 ||f(P)-f(Q)||=sqrt(|u(P)-u(Q)|^2+|v(P)-v(Q)|^2) となり、それぞれ |u(P)-u(Q)|^2≦2c^2||P-Q||^2 |v(P)-u(Q)|^2≦2c^2||P-Q||^2となればよいので、 p,q∈[0,1],γ(p)=P,γ(q)=Qとおくと |u(P)-u(Q)|≦int_q^p{sqrt(u_x(γ(t))^2+u_y(γ(t))^2)sqrt(x'(t)^2+y'(t)^2)}dtとなる。 この不等式をcと||P-Q||だけで表したいのですが、どうすればよいですか? よろしくお願いします。

  • 多様体の問題です。

    多様体の問題です。 X,Y:リーマン面 f:X→Y:正則写像(定値でない) P:Xの点 f(P)=Q とする。 fの座標表示が s = t^n (n∈N)となるP,Qでの局所座標表示 t: U_P → ΔP s: V_Q → ΔQ (ΔP,ΔQ:単位開円板) がある。 つまり、リーマン面からリーマン面への正則写像は 局所的には単位開円板の n重写像Δ→Δ: z→z^n と同じ形をしている。 特にfは開写像。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ これの証明を勉強していて、 分からないところがあって質問させてもらいました。 以下の(*)(**)(***)がその箇所です。 (*): 仮定のどの部分を使っているのでしょうか? (**): テイラー展開したのですが、 これはT^nの項でくくれといっているのでしょうか? (***): ここはさっぱり分かりません…。 「C内の半平面」というのは リーマン面Yの局所座標近傍C_zのことですか? この部分から前に進めなくて唸っているので、 どなたかよろしくお願いします。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 【証明】 P,Qでの局所座標T,Sをとる。 fはPの近傍で S=f_T(T), f_T(0)=0 と正則関数表示される。 仮定と正則写像の一致の定理より、 f_T(0)は恒等的に0ではないことが分かる。 (*) f_T(T)をテイラー級数展開し、 係数が零でない最初の項でくくる。 この操作により、SはTの関数として、 S=f_T(T)=T^n*U(T)、 U(0)≠0 (**) の形にかける。 『|T|が十分小さければ、 U(T)の値は全てU(0)を含み、0を含まない (***) C内の適当な半平面に含まれる。 従って、U(T)のn乗根の偏角を一価かつ連続に指定することができる。 こうして、U(T)^(1/n)の1つを正則かつ一価に定めることができる』

  • 線積分にの問題についてお願いします。

    教えていただきたいのは以下の問題です。 C1: x=t, y=0 (-1≦t≦1) C2: x=cos[t], y=sin[t] (0≦t≦π) C= C1+C2 とするとき ∫[C]・y*e^(x^2+y^2) dx を求めよ 教科書に乗っていた公式? ∫[C]・f(P) dx =∫[a,b]・f(x(t),y(t))*x'(t) dt に当てはめると、f(x,y)=y*e^(x^2+y^2)とおいて ∫[C1]・f(x,y) dx =∫[-1,1]・f(t,0)*1 dt = ∫[-1,1]・0 dt = 0 ∫[C2]・f(x,y) dx =∫[0,π]・f(cos[t],sin[t])*(-sin[t]) dt =∫[0,π]・sin[t]*e*(-sin[t]) dt =∫[π,0]・e*sin^2[t] dt =∫[π,0]・e*(1-cos^2[t])/2 dt = [(e/4)*(2t-sin^2[t])]・[π,0] = (-e/2)*π よって ∫[C]・y*e^(x^2+y^2) dx = ∫[C1]・f(x,y) dx + ∫[C2]・f(x,y) dx = (-e/2)*π ■ としたのですが、計算が複雑でなにか工夫が必要らしいのです、、、 線積分に触れることが普段ないのもあって困ってます。 ヒントだけでいいのでどうかよろしくおねがいします。

  • 積分の問題です

    1.曲線C:x=x(t),y=y(t) a≦t≦b で∫[a→b]√{x'(t)^2+y'(t)^2}dt 2.曲線C:r=f(θ) α≦θ≦β に対して∫[α→β]√{f(θ)^2+f'(θ)^2}dθ それぞれの解答解説をおねがいします!

  • 3重積分に関する問題

     R^3上の広義積分   (1)∫∫∫[R^3] e^(-Q(x,y,z)) dxdydz   (2)∫∫∫[R^3] (x^2 + y^2 +z^2)e^(-Q(x,y,z)) dxdydz ただし、Q(x,y,z)=(x y z) A t(x y z)、Aは、上から、    A=(2 -1 1)(|-1 2 -1)(|1 -1 2) で与えられているとします。上記の二つの積分を求めたいのですが、(1)に関しては次のように考えました。 (1)まず、Q(x,y,z)の標準化を考え、直行行列Pを用いてAを対角化します。そうすると、Pは(ただし、Aの固有値は4、1)、上から(最初の(1/√6)は係数)、  P= (1/√6)(√2 -√3  1)(-√2   0 2)(√2 √3 1) となり、U=tPAPと置くと、A=PUtPとなるので、   Q(x,y,z)=t(tP t(x y z)) U tPt(x y z)。 ここで、(x' y' z')=tPt(x y z)と置くと、  Q(x,y,z)=t(tP t(x y z)) U tPt(x y z)=(x' y' z')Ut(x' y' z')=F(x',y',z') と変換でき、またヤコビアンJ(x',y',z')=-2/3より、  ∫∫∫[R^3] e^(-Q(x,y,z)) dxdydz =(2/3))∫∫∫[R^3] e^(-F(x',y',z')) dx'dy'dz' となります。よって、  (2/3))∫∫∫[R^3] e^(-F(x',y',z')) dx'dy'dz' =(2/3)∫[-∞,∞] e^(-4x'^2)dx'∫[-∞,∞] e^(-y'^2)dy'∫[-∞,∞] e^(-z'^2)dz' ここで、x'=(1/2)sと置くと、上式は、 =(1/3)∫[-∞,∞] e^(-s^2)ds∫[-∞,∞] e^(-y'^2)dy'∫[-∞,∞] e^(-z'^2)dz' =(1/3)(∫[-∞,∞] e^(-s^2)ds)^3 ここで、∫[-∞,∞] e^(-x^2)dx=√π より、 =(1/3)π√π となりましたが、これで正しいでしょうか?また、(2)に関しては、  ∫∫∫[R^3] (x^2 + y^2 +z^2)e^(-Q(x,y,z)) dxdydz =∫∫∫[R^3] (x'^2 + y'^2 +z'^2)e^(-F(x',y',z')) dx'dy'dz' としたところで止まってしまいました。どうやって考えればよいのでしょうか? 以上です。どなたかお力添えしていただけないでしょうか? よろしくお願いします。長文失礼しました。

  • JavaScriptの配列について

    var old_array = Array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '<', '#', '/', '>', '%', '.', '*', '0', '!', '?', ':', '=', '|'); var new_array = Array('b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '<', '#', '/', '>', '%', '.', '*', '0', '!', '?', ':', '=', '|'); のような配列があり、 abcと入力するとbcd DEFと入力するとEFG 012と入力すると!23 というようなものを作りたいのですがどうすればいいでしょうか。

  • 関数解析関連の質問です。

    q∈C[a,b]とし、u∈C[a,b]に対して Qu=q(t)u(t)(a≦t≦b)と定める。 このとき(1)Q∈L(C[a,b],C[a,b]) (2)||Q||=||q||_∞=max(a≦t≦b)|q(t)| をそれぞれ示せ。 C[a,b]はf:[a,b]→K,f:連続写像を満たす写像全体の集合。 L(X,Y)はXからYへの有界線形作用素全体の集合です。 以下C[a,b]をXと表記します。 ∀u∈Xに対してQu∈Xを示します。 示すといっても連続関数の合成は連続なのでOK。 よってQu∈XこれによってQ:X→Xが言えたことになる。 これで線形性はOK? 次にQ∈L(X)を示す。 ∀t∈[a,b]に対して|Qu(t)|=|q(t)u(t)|≦|q(t)u(t)| ≦{max(a≦t≦b)|q(t)|}|u(t)| でこの式の右辺が有界であることが示されれば まず有界であることにより||Qu||_∞が有界となるので、 Q∈L(X)がわかり、同時に||Q||=||q||_∞が示されると思うのですが、 右辺が有界であることはどのように示されるのでしょうか?

  • 線積分

    以下の線積分なのですが、どのように積分すればいいのか分かりません。 どなたか、解答もしくは方針だけでも教えてください。 F=-(GmM)/(|r|^3)・r Fとrはベクトル が与えられている。 (1) ∫[C_1]F・dr (2)∫[C_2]F・dr ただし、各積分領域は C_1については、 点(x_0,y_0,z_0)から点(x_1,y_1,z_1)への線積分で x=x_0+(x_1-x_0)t y=y_0+(y_1-y_0)t z=z_0+(z_1-z_0)t (0<=t<=1) である。 C_2については、円筒座標系で x=pcosφ y=psinφ z=h (0<=φ<=Φ) です。 わかりづらくてすみません。

  • コーシー列の問題です。

    コーシー列の問題です。 P_0をR^2の一点とし、点列{P_n;n=0,1,2...}を P_(n+1)=f(P_n),n=0,1,2... ノルムに関して||f(P)-f(Q)||≦||P-Q||は成立している。 このとき、この点列P_nはコーシー列であることを示したいのですが、 コーシー列を示すには、n,m→∞にして示すのは分かっているのですが、 この問題に関しては、 ||f(P_m)-f(P_n)||≦\\\≦||f(P_(m-n))-f(P_0)||なので、 n,m→0にして示すのですか? もしそうなら このときのコーシー列の定義式は何ですか? また実数の距離空間が完備のは、連続かつ有界という理由からですか? よろしくお願いします。

  • 順列・数え上げ

    よろしくお願いします。 ここに下のような390個の文字があります。 (A,B,C,D,E,F,G,H,I,J,K,L,M がそれぞれ10個ずつ、 N,O,P,Q,R,S,T,U,V,W,X,Y,Z がそれぞれ20個ずつあります。) この390個の文字から235文字を選んで一列に並べる方法は全部で何通りありますか。 A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z 以下、私が考えたことを書きます。 この390個の文字から235個の文字を選ぶ組み合わせの総数は、 (Σ[k=0~10]x^k)^13*(Σ[k=0~20]x^k)^13 を展開したときのx^235の係数ですから、 23463540513956137996043929988 通りだということは分かります。 この23463540513956137996043929988 通りのそれぞれについて235個の文字 の順列(同種のものを含む順列)を数え上げれば答えは出ると思いますが、これは あまりにも大変な作業です。 何かよい知恵はないでしょうか。