• ベストアンサー
  • 困ってます

数学の問題です。

数学の問題です。 画像を参考にしてください。 AB=acm、AD=bcmの長方形ABCDがあり、点Eは辺CDの中点である。また、点Fは辺BC上にあり、BF:FC=3:2となる点である。このとき、△AFEの面積をa,bを 用いた最も簡単な式で表しなさい。 という問題です。 分かる方、教えてください。よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数78
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

解き方の方針として、 1)長方形ABCDから、三つの直角三角形(ABF、ADE、ECF)を引きます。 2)直角三角形の面積は、長方形ABCDの面積の比で計算します。 まず、簡単なADEから。 ADEは、長方形ABCDの二分の一(EがDCの真ん中)の更に二分の一(三角形)。 次はABF。 同様に長方形ABCDの五分の三の更に二分の一。 最後にECF。 長方形ABCDの二分の一×五分の二の更に二分の一。 これで三つの直角三角形は、長方形ABCDの面積(a×b)で表せるので、後は長方形ABCDからこれらを引けばOKです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学の問題です。

    数学の問題です。 画像を参考にしてください。 長方形ABCDの辺AD上に点EをAE:ED=1:2となるようにとり、辺BC上に点FをBF:FC=5:4となるようにとる。 AE=AB、長方形ABCDの周の長さを24cmとする。△EBFを辺BFを軸として一回転させてできる立体の体積は何立方cmか。ただし、円周率はπとする。 という問題です。 分かる方、教えてください。

  • 数学 平行四辺形と三角形の面積

    平行四辺形ABCDがあり 点Eは辺ABの中点である。 点Fは辺BC上の点で BF:FC=3:2である。 平行四辺形ABCDの面積が 70平方cmであるとき △DEFの面積は 何平方cmか。 解説してくれたら 嬉しいです! よろしくお願いします!

  • 数学の問題です。

    AB=6,AD=4,BC=8の台形ABCD(AD∥BC)がある。 ここにPQ∥BCとなるように,2点P,Qを辺AB, CD上にとる。 (1)点Pが線分ABの中点のとき,線分PQの長さを求めなさい。 (2)AP=x,PQ=yとするとき,yをxで表しなさい。 (3)線分PQが台形ABCDの面積を二等分するとき,線分APの長さを求めなさい。 のうち、(3)がわかりません。解説もお願いします。

  • 数学の問題です。

    カテゴリ(中学受験)に投稿してしまいましたので、再投稿です。 申し訳ありません。 AB=6,AD=4,BC=8の台形ABCD(AD∥BC)がある。 ここにPQ∥BCとなるように,2点P,Qを辺AB, CD上にとる。 (1)点Pが線分ABの中点のとき,線分PQの長さを求めなさい。 (2)AP=x,PQ=yとするとき,yをxで表しなさい。 (3)線分PQが台形ABCDの面積を二等分するとき,線分APの長さを求めなさい。 のうち、(3)がわかりません。解説もお願いします。

  • 中学数学の問題です

    教えてください AB=4cm、BC=6cmの長方形ABCDの紙を頂点Bが辺ADの中点Mと重なるようにおったときの折り目をEFとする FからADに垂線FHをひくと△AEM∽△HMFとなる どうして△AEM∽△HMFとなるのですか よろしくお願いします

  • 高校数学の問題です。

    AB=15、BC=24である△ABCの辺AB上にAD=2となる点Dを、辺BCの延長上にCE=ADとなる点Eをとる。 △ABCの面積をSとおく。 DEとACの交点をFとすると AF/FC=□とな り、 △ADFの面積=□Sである。 また、点Dを通り辺BCに平行な直線とACの交点をGとおくと、 DG=□であり、 DF/EF=□となる。 したがって、△CEFの面積=□Sである。 □の部分をお願いします。

  • 数学問題

    ab=24cm,bc=12cmの長方形abcdがある。点pは辺ad上を毎秒1cmの速さでaからdまで動き、点qは辺ab上を毎秒2cmの速さでbからaまで動く。二点p,qがa,bを同時に出発するとき二秒後の△apqの面積を求めなさい。 という問題があります。どうやって面積を求めればいいのでしょうか。 回答お願いします。

  • 高校数学の問題です。

    解こうとしましたが、最初からできませんでした。 すみませんが、ご回答よろしくお願いします。 四角形ABCDは、すべての内角が180°より小さく、かつAD<BCが成り立つような四角形で、4頂点のいずれをも通らないある直線Lに関する対称移動で同じ四角形に移されるものとする。このとき、点Aを通り直線DCに平行な直線と辺BCとの交点をGとし、直線AGと直線BDとの交点をE、直線CEと辺ABとの交点をFとして、次の問いに答えよ。 (1)四角形ABCDはAD//BCかつAB=DCであるような等脚台形であることを証明せよ。また直線Lはどのような直線であるか。理由をつけて答えよ。 (2)AD/BC=AF/BFが成り立つとき、GB/GCの値を求めよ。 (3)AD/BC=AF/BFが成り立ち、さらに、直線ACに関する対称移動によって、点Dは点Gに移るものとする。 このとき、台形ABCDの外接円の中心を求めよ。

  • 中学数学の図形問題で分からない所があります

    数学の問題なのですが分かりません 下の図で四角形ABCDは長方形、Eは辺AB上の点、Fは辺BCの中点である。 また、GはFD上の点で、EG⊥FD、HはECとFDとの交点である。 AB=12cm 、 AD=8cm 、 AE=4cm である。 線分GDの長さを求めよ。 という問題です。 恐縮ですが 宜しくお願い致します。

  • 図形の問題

    問題文そのまま転記します。 AB=CD=5cm、BC=AD=10cm の長方形ABCDの辺AD上を点PがAを出発し、 毎秒1cmの速さで進む。点Qは点Pと同時にBを出発し、毎秒2cmの速さでCまで進む。 点Pは点QがCに到着した時に同時に止まる。点PとQが同時にそれぞれAとBを出発して、 X秒後の四角形ABQPの面積をycm^2とすつろき、下の問いに答えなさい。 (1)四角形ABQPの面積が長方形ABCDの面積の半分になるのは何秒後か 求めなさい。 (2)PQの長さが一番長くなるのは何秒後か求めなさい。 (3)yをxの式で表しなさい。 こんな易しい問題で申し訳ありません。 解説お願いいたします。