• 締切済み
  • 困ってます

中学数学の問題です

教えてください AB=4cm、BC=6cmの長方形ABCDの紙を頂点Bが辺ADの中点Mと重なるようにおったときの折り目をEFとする FからADに垂線FHをひくと△AEM∽△HMFとなる どうして△AEM∽△HMFとなるのですか よろしくお願いします

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • info33
  • ベストアンサー率50% (260/512)

>どうして△AEM∽△HMFとなるのですか 直角三角形の相似条件 : ∠EAM=∠MHF=90度 ∠AEM=90度ー∠AME=90度ー(180度ー90度ー∠HMF)=∠HMF を満たしているから ∴ △AEM∽△HMF

共感・感謝の気持ちを伝えよう!

  • 回答No.1

∠AME+∠EMF+∠DMF=180度 ∠EAM=∠EMF=∠FHM=90度 ∠FMH=90度ー∠AME ∠AEM=90度ー∠AME  よって・・・・・・ 直角三角形の直角以外の角が等しければ、合同。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 中学数学の図形の問題です。

    数学の図形の問題がわかりません。教えてください。よろしくお願いいたします。 図のようにAB=6cm、BC=9cmの長方形ABCDがある。辺ADの上側に点Eを、AB=AE、AD=DEとなるようにとる。また、点Eから辺ADにひいた垂線と辺ADとの交点をFとし、点Dから線分AEにひいた垂線と線分AEとの交点をGとする。点Hは線分CEと辺ADとの交点である。 このとき次の問いに答えなさい。 ・点Eと直線CDとの距離を求めなさい。 ・線分DHの長さは線分FHの長さの何倍か求めなさい。

  • 中学の数学の問題、解答をお願いします

    長方形ABCDでAB=21、AD=27である。点EはAB上にあり、AE=12、EB=9である。頂点CをEに重なるように折り返したときの折り目をHIとする。このとき、HIの長さを求めよ。 よろしくお願いいたします!

  • 三平方の定理について教えてください

    図の長方形ABCDで.辺ADの中点をEとし.ACとBEの交点をFとします AB=4cm.BC=6cmのとき.次の問いに答えてください (1)BEの長さを求めてください (2)AFの長さを求めてください お願いします 解き方の説明もあればうれしいです 宜しくお願いいします

  • 中学数学の図形問題で分からない所があります

    数学の問題なのですが分かりません 下の図で四角形ABCDは長方形、Eは辺AB上の点、Fは辺BCの中点である。 また、GはFD上の点で、EG⊥FD、HはECとFDとの交点である。 AB=12cm 、 AD=8cm 、 AE=4cm である。 線分GDの長さを求めよ。 という問題です。 恐縮ですが 宜しくお願い致します。

  • 高校入試の問題です 教えてください

    AD=6cmの長方形ABCDの辺ADを2:1に分ける点をE、線分BEと対角線ACとの交点をFとし、Bから対角線ACに下ろした垂線をBGとする。△BGF∽△BAEであり、辺ABの中点をMとするとき、GMの長さを求めなさい。

  • 数学の問題です。

    数学の問題です。 画像を参考にしてください。 AB=acm、AD=bcmの長方形ABCDがあり、点Eは辺CDの中点である。また、点Fは辺BC上にあり、BF:FC=3:2となる点である。このとき、△AFEの面積をa,bを 用いた最も簡単な式で表しなさい。 という問題です。 分かる方、教えてください。よろしくお願いします。

  • 本当に初歩的な質問です

    右の図のように、AD〃BC,AD=3cm、BC=6cm、∠BCD=90度の台形ABCDがある。辺 AD,CDの中点をそれぞれM、Nとし、辺AD,CDの中点をそれぞれM、Nとし、辺BCの三等分点 をK、Lとする。 (1)AB=4cmのとき、CDの長さを求めよ。 (2)ALとMKの交点をPとするとき、AP:ALを求めよ。 (3)ALとNKの交点Qとするとき、△ABLの面積は△QKLの面積の何倍になるか。 テキストの(3)の解説で(1)のAB=4センチメートルを当然のように前提にしているのですが、(1)はAB=4cmのときという限定された問題です。(3)の問題までAB=4cmが前提になるのはおかしいような気がするのですが?

  • 長方形を対角線で折り返す

    三垂線の定理がわからないので質問します。 問題は、 AB=a,BC=b(a<b)の長方形ABCDがある。この長方形を対角線ACを折り目として、頂点Dから平面ABCに引いた垂線が辺BC上の点Eで交わるように折り曲げる。 (1)DEの長さを求めよ。(2)2平面ABC,ADCのなす角θの余弦を求めよ。 (1)平面BDCがABに垂直なので、∠ABD=90°∴ BD=√(AD^2-AB^2)=√(b^2-a^2)であるが、これより BD^2+CD^2=b^2=BC^2 ∴ ∠BDC=90° そこで、∠DBC=∠CDE=αとおくと DE=BDsinα=√(b^2-a^2)*a/b (2)EからACに垂線EFを下すと、三垂線の定理より、DF⊥ACとなる。と解説されているのですが、 平面ACDに、平面ACD上にない点Eから垂線を下しその足Fが、平面ACDに含まれる直線ACを通るとき、点Eから平面ACD上の点Dに垂線を下したら、DF⊥ACとなるのはわかるのですが、問題文の、頂点Dから平面ABCに引いた垂線が辺BC上の点Eで交わるように折り曲げるから、DがEから平面ACD上におろした垂線の足になっているのが納得できません。そして三垂線の定理がわからなくなりました。 どなたか、EからACに垂線EFを下すと、三垂線の定理より、DF⊥ACとなる。を証明してくださいお願いします。

  • 数学図形について教えて下さい。

    中学数学について、お教え下さい。 縦4cm・横8cmの長方形があります。辺AB・CD=4cm 辺BC・AD=8cmとなるように横長に置きます。長方形の頂点Aが頂点Cと重なるように折り、折り目と辺AD上の交点をEとし、辺BC上の交点をFとします。辺DEの長さを求めなさい。 ↑回答は3cmとなるのですが、3cmがどのように導かれたかわかりません。中学数学で出題されているので、できれば三角比(サイン・コサイン・・・・)を用いずに解読できればと思います。かなり初歩的な問題かと思いますがご存知の方是非教えて下さい。

  • 二次関数の問題です!

    AB=10、BC=8の長方形のABCDの辺BC、CD上に、EC=5、CF=4となるようにそれぞれ点E、Fをとる。線分EFの一点Qから辺ABに下ろした垂線をQP、また辺ADに下ろした垂線をQRとする。点QがEF上を動くとき、長方形APQRの面積Sは、AP=?のとき最大となり、Sの最大値は?である。 AP=?とSの最大値?を求めよ。 答)AP=5分の31 Sの最大値20分の961 解説をなくしてしまったので解き方を詳しく教えてください よろしくお願いします。