• ベストアンサー

固有値の問題です。

固有値の問題です。 V:線形空間(有限次元) T:V→V s.t. T・T=id_v λがTの固有値のとき、λ=±1となることを示せ。 +++ 恒等変換ということを使うのだと思うのですが、 示し方がまるで分かりません。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

固有ベクトルを x とおく.

vandermonde
質問者

お礼

!! 分かりました! ありがとうございました!

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 固有の量とは何ですか?

    K上の有限次元線形空間Vに対して、写像f:V→Vは線形写像。 Vの基底εに対する、fの表現行列をAと表すとき、 (1)det(A) (2)Tr(A) (3)rank(A) が基底εのとり方によらず定まるということを線形変換fの固有の量 であるとのことなのですが、いまいち固有の量というものがイメージ できません固有の量とはなんなのでしょうか。 そして、なぜとり方にやらないのでしょうか?

  • 行列空間と固有ベクトル

    簡単な問題なのかもしれないのですが,何度解いてもわかりません>< 3次元正方行列全体のなすベクトル空間をVとする。 行列A=((2 0 0)^t (0 -1 0)^t (0 0 -1)^t)として 線型写像f:V→Vをf(X)=AX-XA (X∈V)と定義する。 (1) E_13=((0 0 0)^t (0 0 0)^t (1 0 0)^t)   が固有ベクトルであることを示せ。 (3) 線型写像fに関して,固有値と対応する固有空間を全て求めよ。 という問題で,(1)を解いて,固有値の1つが3となったのですが,(3)で AX-XA=λXとして固有値を求めると,λ=0,±√3となってしまいます。。。 どなたか解説お願いします。

  • この問題の解き方教えてください。

    学校の講義で使っている教科書の練習問題なのですが分からない問題が出てきたので教えてください。 1、R^(4)の線型変換φを    φ(x_1,x_2,x_3,x_4) =(x_1+x_2 , x_3+x_4 , x_1+x_2+x_3+x_4 , x_1+x_2‐x_3‐x_4)  と定めるとき、Ker(φ),φ(V)の基底をそれぞれ一組求めよ。 2、定理(線型写像に関する次元公式)   Vを有限次元ベクトル空間、Wを(有限次元とは限らない)ベクトル空間、φ:V→Wを線形写像とするとき、次の等式が成り立つ:      dimV=dimKer(φ)+dimφ(V)  上の定理を使い、有限次元ベクトル空間の線型変換φは、単射であることと、全射であることが同値であることを証明しなさい。 この二問です。1、に関してはなんとなくわかりそうなのですがわからず、2、全くといってよいほど分かりません。 是非教えてください。お願いします。

  • 行列の固有値・固有ベクトルの問題です

    こんにちは。 固有値、固有ベクトル(空間)の問題で分からない所があるので、教えていただきたいです。 問題は 次の線形変換T:R[x]2 → R[x]2 に対して固有値と各固有値についての固有空間を求めろ。 (1)T(f(x)) = f(1-x) (2)T(f(x)) = f(2x) +f ’(x) (1)について R[x]2の標準基{1,x,x^2}は線形変換Tでそれぞれ T(1) = 1 T(x) = 1-x T(x^2) = 1-2x-x^2 となるため、表現行列Aは A=[1 1 1; 0 -1 -2; 0 0 -1] (;ごとに行を区切って書いています) これの固有多項式を解くと、λ=-1,1 λ=-1の場合は固有空間を求めることが出来たのですが、 λ=1のとき、[E-A]の行列を簡約化すると [0 1 0; 0 0 1; 0 0 0] となり、ここからどうすればいいのかが分かりません。 (答えはc1+c2(-x+x^2)となります。) また、(2)の方も同様に行うと、 表現行列Aは A=[1 1 0; 0 2 2; 0 0 4] となり、固有値がλ=1,2,4となります。 λ=2,4の場合は自力で出来たのですが、λ=1のときに、(1)でつまずいた行列と全く同じ形になり、こちらもどうすればいいのか分かりません。  (答えはcとなります。) 長くなってしまい申し訳ないです。 どうぞ、よろしくお願いします。

  • 固有値

    A=(2,1,1 1,2,1 1,1,2) でC^3における線形写像TをT(v)=Av(v∈C^3) の時、Tの固有値ってどう求めればいいですか?

  • 行列の固有値と逆

    Aが有限次元の行列のとき、固有値は|λE - A|=0 を満たすλです。したがって固有値に1が含まれないとき |E - A|≠0 なのでE-Aが逆を持つことはすぐに分かります。Aが無限次元ヒルベルト空間の線形作用素のとき、固有値に1が含まれなければE-Aが逆を持つことはどのように証明したら良いでしょうか。フレドホルムは行列式の無限次元の極限を考えたりしたようですが、そのようにしてできるのでしょうか。

  • 代数的重複度が幾何学的重複度より大きくなっている例を挙げよ

    宜しくお願い致します。 [問]Vを有限次元線形空間とする。 ある固有値の代数的重複度(固有方程式の解の重複度)が幾何学的重複度(固有空間の次元)より大きくなっている例を挙げよ。 という問題なのですがどのような例が挙げられますでしょうか?

  • 線形代数の固有値の問題です

    vの転置行列をtvと表します。 問.v∈R3かつv≠0とし、a∈Rとして3次正方行列BをB=aE(3) + v*tvによって定める。 (1)Bvをaとvを用いて表すことによってvはBのある固有値に対する固有ベクトルであることを示し、vに対応するBの固有値をaとvを用いて表わせ。 (2)aはAの固有値であることを示し、aに対するBの固有空間はvで生成されるR3の部分空間の直行補空間であることを示せ。 という問題なんですが、固有ベクトルの定義に帰ってみて考えているのですが全然わかります。 tvがキーになっているように思います。 どなたか解説お願いします。

  • 固有値に関する問題

    固有値に関する問題ですが、    |2 -1 0| A=|5 -3 -1|    |-3 2 1| という行列に対して、線型写像fをf:R^3→R^3、f(x)=Ax(xはR^3の元)とします。 (1)Aの固有値、固有ベクトルは? (2)R^3の部分空間f(f(R^3)の基底は? という問題なのですが、(1)に対しては、固有値をλとすると、   固有多項式 : λ^3=0  固有値 : λ=0   固有ベクトル : t(-1 -2 1) となると思います。しかし、固有ベクトルが1つしか求めることがでず、対角化できません。この場合(2)の問題に対して、(1)の問題は関連性はないのでしょうか?そんなわけがないと思い、いろいろ考えてはいるのですが、いまいち問題の意図するところがつかめません。どなたかアドバイスをいただけないでしょうか?

  • いい参考書や問題集があったら教えてください!

     僕は、とある大学の2年生で、幾何学(線型代数学)を勉強してますが、分からなくて困っています!(前期試験は、全然できませんでした。)教科書だけではまったく分からないので問題がたくさん載っていて、しかもその問題の答えが正確に分かりやすくのっている参考書や問題集があったら教えて下さい。もちろんその範囲の定義や理論などもわかりやすく丁寧に書かれているものがいいです!  あと前期試験では、このような問題がでました。  (ex)VはR上の線型空間、Vにa,b,cは含まれるとする。このときa+b,b+c,c+aが1次独立ならばa,b,cも1次独立であることを示しなさい。 上記の問題以外にも線型空間や基底変換などが条件として問題の中に出てくる正則行列であることを示す問題や、部分空間が問題の中に出てきて、そのときの一組の基底を求める問題や、線型空間や線型変換、部分空間などが問題のなかに条件として出てくる直和の問題や表現行列の問題や、線型写像の次元の中の線型写像の核や像の問題がでました。  後期からは、1.線型写像の次元の中の階数、退化次数、双対基。2.計量線形空間(ユークリッド空間、ユニタリ空間、大きさ、ノルム、正規直交系、正規直交基底、直交補空間、グラム行列、ユニタリ変換、随伴変換、エルミート変換、折り返し)3.固有値と固有値ベクトル(固有値、固有ベクトル、固有空間、固有多項式、固有方程式、特性方程式、相似、行列の対角化、対角化可能、実対称行列の対角化、エルミート行列の対角化、行列の三角化、三角化可能、ケーリー・ハミルトンの定理とフロベニウスの定理)、4.2次形式とエルミート形式(実2次形式、実2次形式の標準形、係数行列、シルベスターの慣性法則、2次形式の符号、エルミート形式の標準化、係数行列、エルミート形式の符号)の所をやります。どうかいい参考書をこの私に紹介してください。