• ベストアンサー

行列のイメージ

行列のイメージ 行列ってどんなイメージですか? またどんなとき使えますか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

高校までのベクトル・行列のイメージは、数を並べたもの、で いいでしょう。 行列は3Dゲームの物体回転などで、必須のものです。 なんせ空間の点は三次元ベクトルですから。 また、大学では、まったく別だったはずの 変数xとベクトルv 関数fと行列m が対応していると知ります。写像という概念です。(参考URL) 今ではこちらのイメージの方が強いです。

参考URL:
http://ja.wikipedia.org/wiki/%E5%86%99%E5%83%8F
Grandmaster
質問者

お礼

回転ですか…複素数みたいですね。 行列は学べば学ぶほど面白そうですね!! なんだかつかめそうです。 回答ありがとうございました。

その他の回答 (1)

  • nananasi
  • ベストアンサー率25% (10/39)
回答No.1

私も先生に同じ質問をしました。 概念はベクトルと一緒で、大学の理工学部等でよく使われるそうです。 大学入試レベルだったら、教科書に載ってる理屈さえ理解すれば十分対応できるそうです。 そういえば、ベクトルの成分による内積の計算と行列の積の計算ってやり方が似てますよね。 関係あるかはわかりませんが・・・

Grandmaster
質問者

お礼

>私も先生に同じ質問をしました。 そうなんですか! 行列って計算ばっかりでもっと使いたいのに…って思うんです。 >ベクトルの成分による内積の計算と行列の積の計算ってやり方が似てますよね。 ハミルトン四元数で内積も外積も定義されますから、似てるんだと思います!! 回答ありがとうございました!!

関連するQ&A

専門家に質問してみよう