• ベストアンサー

割り算の定義

aを整数、bを正の整数とするとき、 a = bq + r , 0 ≦ r < b を満たす整数q、rの組みがただ一つ存在する。(qは商、rは余り) と「大学への数学」という雑誌にありました。 bが負の整数のときは、 0 ≧ r > bと考えるべきでしょうか? そもそもこの定義、q以外は整数から拡張して有理数や実数にも適用できるものなのでしょうか?(出来るような気がしますが。)

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

b が負のときには 0 ≧ r > b とすることも 0 ≦ r < |b| とすることもあります. あるいは, 正負に関係なく「|r| を最小化する」という定義にもできます. そして, 想像通り有理数や実数にも拡張できますし, 「|r| を最小化」とすれば複素数にも拡張できます.

Woertet
質問者

お礼

回答ありがとうございます。 回答を受けた上で疑問なのですが、とすると例えば、 10を-3.5で割ったとします。 余りの定義が0 ≧ r > b なら、10 = -3.5 X 3 + (-0.5)で余りが-0.5なのに対し、 余りの定義が0 ≦ r < |b| なら、10 = -3.5 X (-2) + 3で余りが3ということなのでしょうか。 それに、「|r| を最小化する」とは、余りは「|r|が最も小さくなるrとする」ということなのでしょうか?

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

全部ひっくるめてその通りです. なお, 除数 b が正の場合であっても, 「|r| を最小化する」 r を余りとして採用することも考えられます. この場合, b が正であるにもかかわらず余り r が負になることもあります.

Woertet
質問者

お礼

大変ありがとうございました。 良くわかりました。

関連するQ&A

  • 実数の定義について

    実数の定義は、いろいろあるようですが、 "切断による定義" が理解できずにいます。 よく言われるのが、 " 有理数Qの切断を実数Rとする " というのがありますが、 そもそも有理数しかない集合を切断したところで、 なぜ実数が定義できるのか、よくわかりません。 これとは異なり、 " 有理数体における基本列(コーシー列)全体のなす集合を実数とする " というのは何となく理解できています。 (基本列の極限をとると無理数が生成される様子がイメージできる) 両者の定義は、数学的には同じということらしいですが、 とてもそうは見えません。 切断による実数の定義はどのようなイメージができれば 理解できますか?

  • べき乗の定義は負の整数へと拡張できるのか(再)

    べき乗の定義は (1) a^1 = a (2) a^(p+1) = a^p * a ただし p は正の整数 となります。 この定義が、このまま負の整数へと拡張できるかどうかを考えてみました。 p=0 へと拡張するならば、 (A) a = a^0 * a という式が加わります。 a≠0 であれば a^0=1 となり a=0 なら 0^0 はどんな値も許され、0^0 は「不定」と言われます。 いずれにせよ、(1)(2)が成立するように a^0 の値を選ぶことができます。 p=-1 へと拡張するならば、さらに (B) a^0 = a^-1 * a という式が加わります。 a≠0 であれば a^-1=1/a となり a=0 なら 0^0=0 とした上で 0^-1 はどんな値も許されます。 さらに続けていくと、 (3) a^0 = 1 ただし a≠0 (4) a^(-p) = 1/(a^p) ただし a≠0, p は整数 (5) 0^(-p) = 0 ただし p は整数 という式が成立するように値を選ぶなら、べき乗の定義を負の整数へと拡張できることが分かります。 ところが、0^0 は 「不定」として扱うのが普通です。 これは、負の整数への拡張を考えていないから、と理解すればいいのでしょうか? そして、負の整数への拡張を前提とするなら、0^0=0 として扱うべきでしょうか?

  • 整数について

    a,bは整数とする (a,b)=1の時 ax+by=1を満たす整数x,yが存在することを示せ で次のように証明してみました。  (1)(a,b)=dの時、ax+by=dを満たす整数x,yが存在するという定理を用 いて考えてみる。   (a,b)=dだからユークリッドの互助法を使ってゆくと最後はdで割り 切れる。計算が次のようになったとする。  a=bq_1+r_1 従ってr_1=a-bq_1・・・(1)  b=r_1q_2+r_2 従ってr_2=b-r_1q_2・・・(2)  r_1=r_2q_3+r_3 従ってr_3=r1-r_2q_3・・・(3)  r_2=r_3q_4+0 (r_3=d)  ここで(3)に(2)を代入  d=r_3=r_1-(b-r_1q_2)q_3  =r_1-bq_3+r_1q_2q_3  =r_1(1+q_2q_3)-bq_3・・・(4)  (4)のr_1へ(1)を代入  d=(a-bq_1)(1+q_2q_3)-bq_3  =a+aq_2q_3-bq_1-bq_1q_2q_3-bq_3  =a(1+q_2q_3)+(-q_1-q_1q_2q_3-q_3)b  (1+q_2q_3)=x , (-q_1-q_1q_2q_3-q_3)=yとおくと  d=xa+by 従って(a,b)=ax+by  よって(a,b)=1の時にax+by=1となる整数x,yが存在する。  このように証明しました。大丈夫でしょうか? (2)また、次の定理を使った場合はどう証明しますか。   定理・・自然数a,b(a>b)についてaをbで割りその整商をq、余りをr とするとa=bq+r (0≦r<b) このとき(a,b)=(b,r)  この定理を使った場合の証明はなりますか。 よろしくお願いしま  す。

  • 次の整数Aを整数Bで割り、商Qと余りRを求めなさい。

    次の整数Aを整数Bで割り、商Qと余りRを求めなさい。 そしてその結果をA=BQ+Rの形で書きなさい。 A=5X三乗-4X二乗+7X-8 B=5X二乗+x-1 の解き方がわかりません。 どなたか教えてください。お願いします。

  • べき乗の定義は負の整数へと拡張できるのか

    べき乗の定義は (1) a^1 = a (2) a^(p+1) = a^p * a ただし p は正の整数 となります。 この定義が、このまま負の整数へと拡張できるかどうかを考えてみました。 p=0 へと拡張するならば、 (A) a = a^0 * a という式が加わります。 a≠0 であれば a^0=1 となり a=0 なら 0^0 はどんな値も許され、0^0 は「不定」と言われます。 いずれにせよ、(1)(2)が成立するように a^0 の値を選ぶことができます。 p=-1 へと拡張するならば、さらに (B) a^0 = a^-1 * a という式が加わります。 a≠0 であれば a^-1=1/a となり a=0 なら 0^0=0 とした上で 0^-1 はどんな値も許されます。 さらに続けていくと、 (3) a^0 = 1 ただし a≠0 (4) a^(-p) = 1/(a^p) ただし a≠0, p は整数 (5) 0^(-p) = 0 ただし p は整数 という式が成立するように値を選ぶなら、べき乗の定義を負の整数へと拡張できることが分かります。 ところが、これでは 0^0=0 と確定してしまい、未定義になってくれません。 そこで、「不定」という概念を生かせないか考えてみます。 0^0 を「不定」であるとしておくなら、(B)は a=0 を代入して (C) 0^0 = 0^-1 * 0 であり、0^-1 もまた「不定」と解釈することができます。 ところが、「不定」と 0 との積がどうなるかを決定することができません。 この積を 0 と仮定するなら、0^0=0 ですし、「不定」と仮定すれば、(A) が成立しません。 どうすれば、0^0 が「不定」であることを、数学的に証明できるのでしょうか?

  • 整式の割り算

    問題は次の(A)(B)を同時にみたす5次式f(x)を求めよ。図のような記述(赤○からの記述の後) (A)f(x)+8は(x+1)^3で割り切れる(B)f(x)-8は(x-1)^3で割り切れる 「f‘(x)は(x+1)^2で割り切れ、(x-1)^2でも割り切れる4次式である。」とあります。 整式の割り算で疑問に思ったのですが、なぜ(x-1)^2、(x+1)^2で割り切れるのでしょうか? (x-1)^3、(x+1)^3では割り切れないとはなぜいえないのでしょうか? 整式の割り算で A(x)=p(x)(割る式)q(x)(商)+r(x)と除法を考えるとき、r(x)の次数についてp(x)よりは低いということはわかるのですが。 整数の割り算ではA=P(割る数)Q(商)+R(あまり) Rについて0≦R<Pです。また、A,P,Q,Rはすべて整数になるよう考える。

  • xの入った割り算について

    とある問題でx{ax^2+bx+(b-a)}からいきなりx(x+1){ax+(b-a)}としてるのですが、なぜいきなりできるのでしょうか! a=bq+rより {ax^2+bx+(b-a)}=(x+1)q+r(今回は0とする)からいちいちqをもとめなければできないのではないですか?

  • 指数関数の定義について

    『微分積分学』(笠原、サイエンス社)の命題2.31にの指数法則の証明のところでわからないところがあります。 まず、実数a>1および任意の実数xに対してa^x=sup(a^r)と定義します。ここでsupはr≦xとなるすべての有理数rについての上限です。 こう定義したときに指数法則を満たすかどうかについて。 任意の実数x,yに対して指数法則(a^x)(a^y)=a^(x+y)を示す証明の中で、2つの集合{r+s;r,sは有理数,r≦x,r≦y}と{t;tは有理数,t≦x+y}とが等しいとあります。 たとえばx=π,y=-πのときt=0は後者の元ですが、t=r+s,r≦x,s≦yとなる有理数r,sが存在するならばr≦π,-r≦-πとなりr=πとなってしまってπ(円周率)は有理数ではないので矛盾, つまり上の相等は成り立たないように見えます。 私の推論のどこがおかしいのか教えてください。

  • ユークリッドの互除法について

    こんにちは。高校数学A、ユークリッドの互除法についてです。 問題集の 整数aを正の整数bで割った余りをrとする。aとbの最大公約数はbとrの最大公約数と一致することを証明せよ。 という問題の解説で aをbで割った商をqとすると a=bq+r aとbの最大公約数をg1、bとrの最大公約数をg2とし、 a=a'g1,b=b'g1:b=b”g2,r=r'とする。 ただし、a',b',b”,r'は整数で、a'とb',b”とr'はそれぞれ互いに素である。このとき、 r=a-bq=a'g1-b'g1q=(a'-b'q)g1 a'-b'rは整数であるから、g1はrの約数、★すなわちbとrの公約数になる。 ★よってg1≦g2 以下略 この★の部分がわかりません。 g1がrの約数になると bとrの公約数とも言える理由は何なのでしょうか? そしてなぜg1よりg2のほうが大きくなるのでしょうか? どなたかよろしければ ご教授お願い致します。

  • 割り算の問題

    a,bを自然数とし、aを8で割った余りをr、bを8で割った余りをsとする。 a+bを8で割った余りとr+sを8で割った余りが等しいことを示せ。 【解答】 a,bをそれぞれ8で割ったときの商をp,qとすると、 a=8p+r b=8q+s とあらわせる。 よってa+b=8(p+q)+r+s   証明完了」 どうしてこれで証明完了なんでしょうか?これではa+bを8で割ったら余りがr+sということだけしか分からないのではないですか? どうして余りが等しいということが言えるのでしょうか?