虚数時間とか虚数質量という言葉をよく聞きますが
啓蒙書などで相対性理論を勉強している者なので、とんでもない馬鹿な質問かもしれませんが。
よく、「虚数質量等を認めれば、タキオンは相対性理論で理論的にはあり得る。ただし、存在は確認されておらず、因果律を破るので、通常、タキオンは認められていない」と書かれていることが多いですね。しかし、それは本当なのでしょうか?(存在したとしても不安定、などとかも聞いたことがありますが、もっと初等的な問題として。)
ローレンツ変換の式というのは、あくまでも、物理量が実数であって、平方根の中が負でない実数であることを前提としてますよね。従って、超光速が出てきて平方根の中が負の数の場合に、この式が形式的にそのまま当てはめられる理論的保障はあるのでしょうか?
光速度不変の原理は、慣性系で原点から光の球面波が発せられたとき、この球面波がc^2t^2=x^2+y^2+z^2 を満たす(原点を共有する慣性系で同じ形)と言うところから出発していますね。これはピタゴラスの定理から来てます。しかし、虚数質量とか虚数時間などを考えるとなると、「もしかしたら物理量は複素数かもしれない」という「仮の相対論」(物理量が実数のときは通常の相対論に一致する)を考える必要はないでしょうか?(光速度は実数だとしても)
ピタゴラスの定理の複素数版は基本的にエルミート内積を使うので、「~」を共役複素数を表すとして、光速度不変の式は(t,x,y,zが実数とは限らないとして) c^2tt~=xx~+yy~+zz~ にならない保証はあるのでしょうか?
特殊相対論では(面倒なのでc=1の単位系を使うとして)、ds^2=dt^2-dx^2-dy^2-dz^2 が不変量とされてますが、もしかしたら、複素数まで認める場合は不変量はエルミート積の考え方で ds(ds)~=dt(dt)~-dx(dx)~-dy(dy)~-dz(dz)~ (別の書き方をすれば、|ds|^2=|dt|^2-|x|^2-|y|^2ー|z|^2)かもしれないという不安があるので、本当に単なる2乗で大丈夫なのか?がお聞きしたいのです。
というのは、量子力学では本質的に複素数を使うと聞いたからです(私は「『ブラベクトル』『ケットベクトル』って何???」というレベルなjのですが、とにかく、内積にはエルミート積を使ってますよね?)。状況によっては、量子力学と相対論を両方使わなければいけないことがあるはずですが、もしここで、虚数時間や虚数質量を使おうとした場合の虚数単位iの意味が相対論と量子論で別かもしれない不安がありまして・・・ええと、よく分からないが、量子論では、実数のかわりに自己共役作用素になるらしい、ということは、純虚数は反共役作用素になるのか?
もっとも、自分でこのやり方で相対性理論を見ると、不変量が |ds|^2=|dt|^2-|x|^2-|y|^2ー|z|^2 に変わってしまうことになるので、若干意味が変わってしまうのがやばいとは気づいてます。
時間軸を虚数時間を使って cti 軸とするテクニックも使えなくなるわ、アインシュタインの略記法の意味も変わってしまうわ(↑を上付き添え字、↓を下付き添え字として、v↑μが反変ベクトル、w↓μが共変ベクトルのとき、v↑μw↓μ=∑[μ=0・・・4](v↑μ)~(w↓μ)となりそう)、などなど意味がどんどん変わってしまいます。計量ってのもよくわからないけれど(そもそもテンソルも分かってない)、意味が変わりそうです。
(ds)^2<0 となるdsは虚数を使えば存在し得ますが、|ds|^2<0 となるdsは複素数内でも存在しない。
従って、タキオンは因果律を持ち出さなくとも存在しない、めでたしめでたし・・・にはならないですね。
理論を変更するには多大な労力が必要ですが、苦労しても「今までできてたことができなくなった」というデメリットばかりなので、自分でも「これは駄目だわ」とは思うのですが。
それでも、理論的に、虚数時間などを使う場合に、ローレンツ変換のあの式がそのまま形式的に使えるかどうかの理論的根拠はあるのかどうか?が気になるので、あえて質問させていただきました。
お礼
質問を撤回させていただきます。確か事象の収斂と拡散の対比についてだったと思いますが、残念ながら私にはよく分かりませんでした。ご批判ありがとうございました。