• 締切済み

幾何 組み合わせ問題

次の形式の問題の解き方でわからないところがあります。 <引用> 正七角形の頂点と対角線の交点とでつくられる三角形について(中略)、 少なくとも二つの頂点が正七角形の頂点であるような三角形の個数は□個である(後略)。 解法式の 35+35C1×(7C2-2)                ↑           この-2の意がどう考えても解けません いったいどういう意味なのでしょうか お願いいたします。 失礼します。このCは組み合わせのCです。前後の数を小さく書く方法がわかりませんでした。

noname#96629
noname#96629

みんなの回答

  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.1

7C2は7個の頂点から2個を選ぶ場合の数になります。 対角線の交点と七角形の2個の頂点で三角形を作るわけですが、その2個の選び方のうち二通りで3点が一直線上に並んでしまいます。 それは、その交点を作る二つの対角線それぞれを作る頂点の組を選んだときにあたります。3点が一直線に並ぶと三角形を作ることが出来ません。

noname#96629
質問者

お礼

やっとわかった。最初に選んだ対角線の頂点一つにつき、2通り三角形が作れない選び方がある。それが全部で35C5通り個あるので掛け算になる。 有難うございます。

関連するQ&A

  • 組み合わせの問題です

    正n角形がある(nは3以上の整数) この正n角形のn個の頂点のうちの3個を頂点とする三角形について考える n=6K(Kは正の整数)であるとする。このとき、Kを用いて表すと、正三角形の個数は(ァ)であり、直角三角形の個数は(イ)である 解答はァが2K、イが6K(3K―1)です 解説がないためどなたか教えてください。よろしくお願いいたします。

  • 角度を求める問題です。

    図の∠xの大きさを求める問題です。 直線を延長したり、三角形を折り返してみたりしましたが、上手い解法が見つかりません。 (点の名前を書いてませんので、全体の四角形の頂点を左上から時計回りにABCD、対角線の交点をEとします) よろしくお願いします。

  • 大学二次試験の問題

    正七角形について 1 対角線の数を求めよ…解けました。 2 対角線を2本選ぶ組合せは何通りあるか 3 頂点を共有する2本の対角線は何組あるか 4 共有点を持たない2本の対角線は何組あるか 5 正七角形の内部で交わる2本の対角線は何組あるか 途中式と考え方を教えてください。よろしくお願いします。

  • 簡単な疑問高校数学組み合わせお願いします。

    よろしくお願いします。 文章で分かりづらいと思いますがすみません。 問題 正7角形の全ての頂点から作られる3角形の数は何通り? だとすると組み合わせで それぞれの頂点にA~Gまで付けるとします。右回りで順番に。 するとAから出る3角形の作り方は例えばCに線を引くと 3角形ABC、ACB.BCAとダブるのでもっと樹形図を 書くと分かるのですが、すると組み合わせだと思って 7C3の計算をすると答えは35通りとなります。 この図を自分で書いてみると、小学生でも頂点Aからそれぞれの 頂点C.D.E. F.までAの頂点からそれぞれの頂点を結ぶと 三角形はその場合5個できるのでそれをBの頂点から出ても 三角形は五個それぞれの頂点から五個ずつできるので (1)7頂点から5個ずつ三角形ができるので 7×5=35   35通りととなりますが たまたまなのでしょうか? 一体組合せと何が違うのでしょうか? 次の質問です。しかし上と同じ考えで 正5角形に置き換えると 頂点は5個 (1)の考え方だと頂点にそれぞれ又A,B, C,D.Eと 又つけてみます。 A頂点から線をAC,ADに引くと3個の三角形が出来るので 5×3=15   15通りとなります。35通りと同じ考えを してみました。 しかし、組合せを習ったので ダブるので 5C3として計算すると今度は初めの問題が 同じ35通りとなるのに今度は 今回も15通りとならないといけないのに この組み合わせの計算をすると10通りとなります。 この考え方の違いを教えて下さい。 正7角形は答えが同じになるのに 正5角形は答えが同じになります。 考え方の何が違うのでしょうか? 教えて下さい。これは小学生でも考えられると言う 考え方の何が間違っているのでしょうか? 図を添付できなくて、文章で分かっていただけますでしょうか 申し訳ありません。 どうかよろしくお願いします。 .

  • 正7角形での場合の数を教えてください。

    正7角形での場合の数を教えてください。 正7角形について、次の個数を求めよ。 問1.頂点を結んでできる四角形の個数 問2.対角線の本数 答案1A.        A   B         G    C           F     D     E 図形が書きにくいと思っていたらお絵かきが出来たので添付します。ナイスOKWave。 でも使いにくくて変になりましたがお願いします。 うわっ、「頂点を結ぶ」で迷っています。 たとえば、ACは当然「頂点を結んでいる」 では、ABは辺なのに「頂点を結んでいる」と捉えるんですか。 この捉え方で答えが違ってきます。 ではこの答案1AではABは辺でもあり、頂点を結んでいるとも解釈します。 そうすると・・何をどうすればいいのか・・ わからないので適当に四角形を挙げます。 並んでいる頂点を結ぶと ABCD BCDE CDEF DEFG EFGA FGAB GABC んー、まだわからない。 一つ飛ばしていくと ACDE BDEF CEFG DFGA EGAB FABC GBCD あれっ、これはもしかして図形ではなくABCDEFGの7個の中から・・みたいな。 なにか法則か規則、繰り返しの決まりを見つければ道が開けそう。 あっ、ひらめきました。たとえば、Aは他の3点と結べば4角形になる。 Bも同様、Cも同様 Aを固定してBCDEFGの中から3つを選ぶ・・だけなら組み合わせ、選んだあと並ばせるなら順列 どっちだろう。 たとえば ABCD  ACBD  ABDC  ACDB 文字頂点順に線を引くとABCD以外四角形にならない。 でも、問は頂点に順番をつけて辺を作れと言っているわけではないから、 順番や並びを考えなくていいから組み合わせ。 これらはもし順列だと4通りだけど、組み合わせの場合は1通りになる。 あれっ、ということは単純に7つ中から4個を選ぶ組み合わせでいい? 7つの異なる文字から4つの異なる文字を選ぶ組み合わせ  ですよね。 だから重複組み合わせでもないと。 7C4=35通り 答案1B. 積の法則でもできそうなのでやってみると まず7つ頂点に対して、そのおのおのについて、残りの6頂点を結ぶ場合の数は6通り、 その6つ頂点に対して、さらにおのおのについて、残りの5頂点を結ぶ場合の数は5通り、 その5つ頂点に対して、さらにおのおのについて、残りの4頂点を結ぶ場合の数は4通り、 1頂点・・7通り 2頂点・・6通り 3頂点・・5通り 4頂点・・4通り 7×6×5×4=840通り あれっ、順列になっちゃった。 どこか、過程に間違いがありますか。 答案2A. 対角線は添付データを書いているときに規則を見つけました。 あれ、対角線の定義もあいまいです。 辺はたしか対角線ではないですよね。 そうすると、1頂点から4本の対角線が出ている。 規則はある頂点の両隣は除く。辺だから。 すると7頂点ABCDEFGの中から4頂点を選ぶ選び方でいいんですか。 7C4=35通り 何か見落としがありそう。 答案2B. 例を挙げてみると 頂点Aと頂点CDEFを結ぶ4つの対角線。 Aに対して4本 Bに対して4本 Cに対して4本 ・ Gに対して4本 あれっ、単純に7頂点×4本=28本 でいいんですか。

  • 高校数学

    正七角形について次の数を求めなさい。 1、3個の頂点を結んでできる三角形の個数 2、4個の頂点を結んでできる四角形の個数 3、対角線の本数 式の展開 1(a+b)5 2(x+1)4 回答よろしく お願い致します!

  • 組み合わせ 解方式の意味がわからない

    お世話になっています。 (引用) 52枚のトランプのカードの中から5枚のカードを選んだとき、ワンペア(中略)という手ができる場合の数を□通りとし、(後略)。 自分が考えた式 (13C1×4C2)×(12C3×4) 解答にのっていた方の式 (13C1×4C2)×(12C3×4^3)                  ↑                 4の3乗 はじめに一つの数字が決められているので、余り12個あるうちから3個選ぶ。そのときスペード、ハート、ダイヤ、クラブの4種類あるので×4と考えたのですが。どうして4の3乗になるのかがよくわかりません よろしくお願いいたします。

  • 対角線が通過する正方形の数(中学入試問題)

    正方形を横にm個、縦にn個並べて、長方形を作ります。 そのできた長方形の対角線が通過する正方形の数を求める問題です。 mとnが互いに素の時、長方形の対角線は正方形の頂点を通過することがないみたいですが、 なぜだか説明できません。 どなたかこのことをうまく説明できる方がいましたら教えてください。 よろしくお願いします。

  • 教えて下さい!

    長方形ABCDがある。頂点Aの座標が(1,8)、頂点Cの座標が(5,2)であるとき、対角線の交点の座標を求めなさい。 この問題のやり方を教えてほしいです!

  • もっと単純な図形がありますか?

    正3角形各頂点から、内部に向かって一本の線分を出し、各線分の交点を第4の頂点とすると、正4面体の展開図(?)になります。一般に各点から3本の線分を出して互いに結び合ったものは、3次元における立体図形の展開図になりますが(たとえばサッカーボールは5角形と6角形を上述の方法で示すことができます)。3本の代わりに4本にしますと、正5角形の各頂点から対角線を引き、できる交点を新たな頂点として立体図形を考えると、正4面体のようなきれいな形ではなく、5角形が二面できて、残りは3角形の面をもったものになります。これよりももっと単純できれいな立体図形はできないものでしょうか。