• 締切済み

微分の問題でグラフの概形を書けという問題がありますが

微分の問題でグラフの概形を書けという問題がありますが 問題によって変曲点まで求めているものと求めていないものがあるのですが グラフの概形を書けといわれた場合 変曲点まで求める必要はあるのでしょうか? 凹凸を調べろとまで言われていたら変曲点まで求めなければいけない ということはわかりますが概形を書けとだけあった場合に どこまで求めればいいのかわからないので教えてください。

みんなの回答

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

4730906 が全く同じ質問だから それを参照

Stealth7
質問者

お礼

ありがとうございました。 解決しました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 微分積分の問題です

    微分積分です。途中式を含め教えて下さい。 (1)次の関数の第二次導関数を求めよ。またx=0における第二次微分係数を求めよ y=(1+x)log(1+x) (2)次の関数増減・極値、そのグラフの凹凸・変曲点などを調べ、グラフの概形を描け y=2(x-1)^ex (2)は文章で伝えるのは難しいかもしれません。なのでyの微分だけでも教えてください。 よろしくおねがいします。

  • 微分 グラフの概形

    h(p) = -plog₂p -(1-p)log₂(1-p) (0≦p≦1) h'(p) と h''(p)、及び h(p)のグラフの凹凸、変曲点はどのようになっておりますか? よろしくお願い致します。 途中式は省いていただいても構いません。

  • 積分、グラフです。

    関数y=√(x^2+1)/x^2-3xの増減、極値を調べ、そのグラフの概形をかけ。ただし、グラフの凹凸、変曲点は調べなくて良い。 が分かりかねます。 どなたか分かりやすい説明していただけませんでしょうか?

  • グラフを書くとき

    グラフを書くときに少し疑問があります。 例えばy=x^4-3x^2+1の増減を調べ、極値、変曲点を求めグラフを書け。 という問題のとき漸近線については特に求めなくてよいのでしょうか? また、y=x^4-3x^2+1の増減を調べ極値、変曲点を求めよ。またグラフの概形を書け。 といときグラフを書け、とグラフの概形を書けとでは何が違うのでしょうか? よろしくお願いします。

  • sinの微分についてです。

    関数y=x-2sinx(0≦x≦2π)の増減、極値、グラフの凹凸および変曲点を調べて、そのグラフをかけ。 という問題です。 二回微分するのはわかりますが、y'=0となる値の求め方がわかりません。 何かコツとかぎあれば教えてください。 お願いします。

  • グラフの概形の調べ方

    グラフの概形を示すことなんですが、 y=texp(-bt)  (b>0) なんですが、どうやったらいいのでしょう。 exp(-bt)をマクローリン展開しても意味なさそうですし。 ちなみに、概形なんで、極値や変局点は見つける必要はないと思います。どんな形かという特徴がわかればOkなんで、ヨロシクお願いします。

  • 関数のグラフの概形の求め方

    y=(2x-1)^1/3(x-1)^2/3 のグラフの概形を求めろという問題なんですが、一回微分が、 2/3(2x-1)^(-2/3)×(x-1)^2/3+(2x-1)^1/3(x-1)^(-2/3) となって、二回微分も求めました。 後は、x→±∞のときの極限を調べて、そこから漸近線を求めて、増減表を書けばいいのは分かるのですが、「極限を求めてそこから漸近線を求めるやり方」が分からなくて先に進めません。誰か、教えて下さい!!

  • 関数の極値 増減

    y=x^2*e^(-2x^3)/3の増減を調べ極値とグラフの概形を描く問題で、 極値は微分して0となる点を求めて増減表から求められましたが概形を描くにはどうすれば良いのでしょうか? 二回微分して凹凸を求めようとしましたが0となる点がわからず困っています。 増減表から描こうと思えば描けますが凹凸を一階の増減表から描いても問題ないのでしょうか?

  • 「グラフの概形を描け」と「グラフを精密に描け」はどう違うんでしょうか。

    タイトルの通りです。 「グラフの概形を描け」と「グラフを精密に描け」はどう違うんでしょうか。 概形を描けというのは、大体の形を描けと言ってる?のでしょうが、 「グラフを精密に描け」と比べてどのくらい描けばいいのでしょうか・・・。

  • グラフの概形をしめす??

    y=x^3+xのグラフの概形を示せと言う問題の解説に「y’=3x^2+1より、全ての実数xに対してy'>0である。したがってこの関数は増加関数であるがy'=0となることがない。また、この関数のグラフは原点に関して対称である。関数の増減だけからこのグラフの形の細かい点について知ることはできないがx=0のときy'=1であることからグラフが原点で直線y=xに接していることがわかる。」とあったのですが、なぜいきなり「この関数のグラフも原点に関して対称である」ということができるのでしょうか?グラフが原点に関して対象ではなく、値は分からないけどx≠0ではないどこかのxの値に関して対称でグラフが原点で直線y=xに接しているということもありえるのではないか?と思えてしまいます・・  お願いします!教えてください!