• ベストアンサー
  • すぐに回答を!

数学で頭のいい人に質問なんですが・・・・

中学校で習う素因数分解の計算なんですが 9991を素因数分解するのですが 答えは103×97になります 地道に素数で割っていけば出てくるのですが、『もっと早く計算する方法』があるというのですが分かりません 友人がこの問題を出してきたんですがどうしてそうなるのかを教えてくれません どなたか私に分かりやすく教えてくださる方はいますか よろしくお願いします

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数326
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

9991=10000-9 =100*100-3×3 =(100+3)(100-3) =103×97 です。 X^2-Y^2=(X+Y)(X-Y) (詳しくは高校で習います) の公式を使えば解けます

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • すばやく素因数分解する方法は?

    「暗号解読」(サイモン・シン(著)青木薫(訳) 新潮社)という本を読んで、急に素数のことに関心を持ちました。 数十桁もある数(合成数)を素因数分解するのは、えらく時間がかかることが書かれていました。 中学生が計算する素因数分解や、「エラトステネスのふるい」のほかに、手計算や計算機を使って、合成数から素数を見つける方法(素因数分解)を知りたいので、ご存知の方教えてください。 できれば、計算機科学における現在、最速の素因数分解の方法(アルゴリズム)を知りたいです。

  • 中学数学を教えて下さい

    今、問題集を解いているのですが解説を読んでも疑問が残ってしまっています。もしかしたらすごく基本的な部分かもしれないのですが、考えても考えてもわかりません。二問あるのですが、どちらかだけでもいいのでお力添えいただければ嬉しいです。 1.ある素数pに72を加えた数を素因数分解すると13×q(ただしqは素数)となる。   またpをこのqで割ると5余るという。   このとき、pの値で考えられるものをすべて答えなさい。 (解説)  p+72=13×qより、p=13q-72  pをqで割った時の商をaとすると、  p=aq+5  よって、13q-72=aq+5  (13-a)q=77                77=7×11、qは素数だからqは7か11   q=7のとき、p=13×7-72=19  q=11のとき、p=13×11ー72=71  19,71は素数だから、問題に適している。     この解説の  (13-a)q=77   77=7×11、qは素数だからqは7か11  q=7のとき、p=13×7-72=19  q=11のとき、p=13×11ー72=71  の部分なのですが、  (1)77が11×7なのは分かるのですが、なぜそのどちらかがqの値になるのか  (2)(13-a)は無視してしまっていいのか  (3)7と11を当てはめて計算するとき、aはどこにいってしまっているのか  など、全体的によくわかっていません。(1)~(3)を無視してもいいので、回答頂けると嬉しいです。 2,自然数nに対して、nの約数の個数をf(n)で表す。例えば、f(7)=2、   f(8)=4,f(9)=3である。   自然数aについて、f(a)=6のとき、f(aの3乗)の値をすべて求めなさい。  解説  6=1×6=2×3だから、aを素因数分解すると、素数p,qを使ってa=p×p×p×p×p   またはa=pq×qの形に表せる。  a=pxpxpxpxpのとき、axaxa=pxpxpxpxpxpxpxpxpxpxpxpxpxpxp(pの15乗)  になるから、  f(axaxa)=15+1=16  a=pqxqのとき、axaxa=pxpxpxqxqxqxqxqxq となるから  f(axaxa)=(3+1)×(6+1)=28  この解説の  6=1×6=2×3だから、aを素因数分解すると、素数p,qを使ってa=p×p×p×p×p   またはa=pq×qの形に表せる。  の部分なのですが、なぜこうなるのかがわからなく、結果的に全部よくわかりません。  頭が悪くて申し訳ないのですが、解説をお願い致します。     

  • 素数の素因数分解

    素数(例えば17)の素因数分解について  (1)すでに素因数分解は終わっている (17の素因数分解は17)  (2)素因数分解はできない のどちらの見解が正しいですか?

その他の回答 (1)

  • 回答No.2

違う方向から もっと早く計算する方法 について 大きな数の素因数分解を一般的に求める方法はありません この問題は昔から研究されて、またいろいろな方法がありますが それでも 試行錯誤して素因数を見つけなければなりません 今 スーパーコンピューターでも計算しきれないような 問題もたくさんあります これらの問題は、人間が直感的に考え、試行錯誤しながら 解決していくのが現実です あなたの友人は、特殊な また、簡単な例をなにかの本で読み 彼方に問題として出しただけです 頭の良い、悪い の程度ではありませんので 気にしないで、数学にも 特別な気持ちを持たずに 接してください 逆に 数学を学ぶ事については 才能よりも努力の部分が大きいように思えます

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学に関する質問(中学~高校レベル)

    2点質問があります。 1.100の1.5乗の解き方について。 母から教えてもらったのですが、 母が出かけていたため、電話越しで教えてもらったので理解し切れていません。 (言葉だけでは理解できませんでした) 100の0.5乗=1/2乗は√100 で、√100×100で、10×100=1000。 で、0.5乗は√をつけると覚えてしまってもいいのかもしれませんが なんで0.5乗はルートがつくのかが分からないのが自分的に嫌です。 母曰く、2乗すると100だから√100だとかかんとか…(すでに理解できていないので、記憶もあやふやになっていますが) なぜ、0.5乗はルートがつくのかを分かりやすく教えていただければと思います(中学レベルもあやふやなので、分かりやすくお願いします) 2.5√√1024という問題があって(最初の5は5乗根です) 素因数分解しても2の10乗、12×18、32の2乗、ぐらいしか分からず 質問をして、ヒントをいただき(ヒントは答えは整数になるから、1から順番に5乗していけば答えが出るというものでした) で、4という答えが導けたのですが この問題ではなくても、 宿題だから、誰かに聞くことが出来ましたが、テストとかで、素因数分解から答えを導き出す時とか(ルート関係の問題とかで) 素因数分解がうまくできなければ答えられませんよね? この問題も最後は整数になるというヒントをいただいたから、1から順番に5乗していって(まあ正確には、6の5乗は1024を超えるの分かっていたし、5の5乗は1の位が5じゃなきゃダメというので、数的にも4だなと思って、4の5乗をしたのですが) 数が大きくなれば大きくなるほど素因数分解が難しいです。 5,6,7とか、それ以上の数で割っていって、途中でダメになってしまうと、すぐ一番簡単な2で割ってしまいます。 通常のルートを最も簡単なルートにするための素因数分解だったらいいのですが ○乗根を求める場合、もっと素因数分解がうまくできないとと思うのですが 頭の中でどういう考えにもっていけたらもっと素因数分解がうまくできるでしょうか?

  • 素因数分解について

    X=√4,840,000 を素因数分解?? で解く場合、100*2*11=2,200 となると思いますが、素数の100を1000にしては駄目ですか? そもそも、素因数分解のルールが理解出来ていません。 素因数分解の簡単なやり方を分かり易く教えて下さる方、宜しくお願いいたします。 因数分解は方程式なので、取っ付きにくいイメージがあります。

  • 数字の件で

    2m∧2 = n∧2 ・・・(1)とする。 ※m,nは自然数 m,nを素因数分解した時の素数の個数を それぞれs,tとすると、(1)式を素因数分解 した時の素数の個数は、 2*s+1,2tになる。・・(2) という、定理があるのですが、 どうやって(2)式が導かれる のかわかりません。

  • 中学の数学問題について質問です

    こんばんは。 また分からない問題があるのですが、解説付きで教えて頂きたいです。 nは自然数で、432/nの2乗 が整数になるという。このようなnのうちでもっとも大きいものを求めよ。 ということなのですが、 432を素因数分解すると2の4乗×3の3乗になるところまでは分かり、答えがn=12というのが分かっているのですが、なぜそうなるのかが分かりません。 分かりにくくてすいませんが、解説をお願いします。

  • 証明の問題がわからないです

    「aとbが互いに素であるとき、 a^2とb^2が互いに素であることを証明せよ」何ですが模範解答を教えてください 素因数分解の一意性から、 a,bの素因数分解が a=a_1・a_2…a_m (各a_iは素数) b=b_1・b_2…b_n (各b_jは素数)のように示すのではなく 最大公約数を考えて背理法で示すやり方でお願いします

  • 素因数分解について

     ものすごく大きな素数二つを掛け合わせた数を素因数分解することは難しい、というようなことを本で読みました。 これって暗号を作ることにも利用されているみたいですが、どうしてこの数を素因数分解することが難しいのでしょうか?

  • 100以下の素数を全て覚えるべきでしょうか

    100以下の素数は25個ありますが、 これらの25個の素数を全部覚えていると、 素因数分解が得意になれると聞いたのですが、 これらの25個の素数を全部覚えるべきなのでしょうか。 数学が得意な人は全部覚えているのでしょうか。

  • 因数分解の文章題です。

    何度してもしっくりきません。 (1)252に自然数aをかけて、その結果の数がある数の2乗になるようにしたい。このような自然数aのうちで、もっとも小さいものを求めよ。 (問題の意味さえピンときません・・・・) 252を素因数分解すると 2^2×3^2×7 答えでは2乗でないものを選ぶと7 答え7 (2)300に自然数aをかけて、その結果の数がある数の2乗になるようにしたい。このような自然数aのうちで、もっとも小さいものを求めよ。 300を素因数分解すると 3×2^2×5^2 答え3 (類題)素因数分解の結果が2×3×4^2の場合 (類題)素因数分解の結果が2^2×3^2の場合はこたえはどのようになるのでしょうか?またその理由もお願いします。

  • n^2-20n+91が素数となる整数nの値・・・

    すごく、基本的な問題だと思うのですが、考え方に疑問があります。 n^2-20n+91が素数となる整数nの値を求める問題です。 参考書の解説には、題式を因数分解して=(n-7)(n-13)とし、 Pが素数のとき、素因数分解したとき1×Pにしかならないので、 n-7又はn-13のどちらかが1ということで、 n-7=±1またはn-13=±1とおいています。 自分が分からないので、「±」です。素因数分解したとき1×Pにしかならないので、 n-7=1またはn-13=1とおいてしまいました。 なぜ、±1とおけるのかが分かりません。要は-1がどのようにして条件になるのかが理解 できていません。 そういうわけでございます。考え方の質問です。

  • 量子コンピュータを用いた素因数分解

    量子コンピュータを用いた素因数分解の方法を教えてください。 ある数Aの素因数分解を行うときに、Aより小さい数全ての重ね合わせのような状態で割る事でその全ての余りを出し、0となった物を取り出すと聞いたのですが、これだと、余りが0でない時と0の時の違いを全てチェックし、どれが素数かを調べる必要が出てしまいます。 実際に採用されたアルゴリズムや方法ではどのような方法をとっているのでしょうか? カテゴリーがどれか分かりませんでした。 カテ違いでしたらすいません。