• ベストアンサー
  • すぐに回答を!

微分方程式

微分方程式を解き方についての質問です。 dx/dt=(2a-3x)/(2a-x) (aは定数) という微分方程式なのですが、これはどういう手順で解いていけばいいのでしょうか?左辺と右辺にxとtを分けるというのはわかるのですが、その後どうしていけばいいかわかりません・・・。 どなたかよろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数73
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

>左辺の積分ができないんですが置換積分や部分積分を使えばいいのでしょうか? 一応2a-3x=tと置いて置換積分でもできますが、そんな面倒なことをせずに (2a-x)/(2a-3x)=1/3 + (4/3)a/(2a-3x) とやるって積分するのがいいかと

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご丁寧にありがとうございます! 助かりました!

その他の回答 (2)

  • 回答No.2
  • info22
  • ベストアンサー率55% (2225/4034)

>∫(2a-x)/(2a-3x) dx = t + C1 左辺は、部分分数展開して、積分すればいいです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます!

  • 回答No.1

dx/dt=(2a-3x)/(2a-x) →(2a-x)/(2a-3x) dx/dt=1 両辺をtで積分して →∫(2a-x)/(2a-3x) (dx/dt) dt=∫1dt →∫(2a-x)/(2a-3x) dx = t + C1 あとはご自分でお解きください

共感・感謝の気持ちを伝えよう!

質問者からの補足

owata-wwwさん、素早い回答ありがとうございます。 左辺の積分ができないんですが置換積分や部分積分を使えばいいのでしょうか? お手数ですがよろしくお願いします。

関連するQ&A

  • 微分方程式

    t≧0で,x = x(t) に関する以下の微分方程式    (dx/dt) + (1/τ)x = (1/τ) cost が成り立つとき,以下の問いに答えよ。ただし,定数τは0ではない実数である。 (1) 微分方程式を解きなさい。ただし,x(0)=0とする。 (2) |τ|= 1 のとき,t → ∞ における(1)の解を求めよ。 よろしくお願いします。

  • 微分方程式について

    以下の微分方程式の問題が分かりません。お願いします。 ◎次の同次微分方程式を、与えられた初期値の下で解け。 (d^2 x)/(d t^2)-2(dx)/(dt)-3x=0,x(0)=3,x^(1)(0)=1 という問題です。 x(t)=cε^(pt)を上記の式の代入して、 (p^2-2p-3)cε^(pt)=0 特性方程式は、H(p)=p^2-2p-3=(p+1)(p-3) になり、 特性根は、p0=-1,p1=3になる x(t)=c0 ε^(-t)+c1 ε^(3t) x(t)’=-c0 ε^(-t)+3c1 ε^(3t) になります。ここで、x(0)とx(0)’を求めるのですがここからがわかりません。 x(0)=c0+c1=3,x(0)’=-c0+3c1=1 と立てれるそうですが、それぞれの左辺は、分かりますが、右辺の3と1の意味が分かりません。なぜ、こうなりますか。 あと、ここからどうしたらよいですが。 お教えください。

  • 微分方程式

    微分方程式を2問ほど解けません お願いします 1問目 (x+y)y'+x-y=0 y'=((y/x)-1)/(1+(y/x)) y/xをtとおくと y’=t+xt' 以上より (t-1)/(1+t)=t+xt' (t+1)dt/(t^2+1)=-dx/x・・(1) 左辺=-logx+logC まではわかるのですが(1)の右辺が解けません 2問目 y'+2xy-x-x^3=0 y'+2xy=x^3+x 両辺にexp(x^2)をかけて exp(x^2)y=∫(x^3+x)exp(x^3)dx ここまではできたのですが右辺の積分ができません どちらか片方でも良いので教えてもらえると助かります

  • 微分方程式

    x(dy)/(dx)+2y=xという微分方程式を解くのですが、これをxでわると (dy)/(dx)+(2y)/(x)=1となるのはわかるのですが、その後、 z=(y)/(x),y=xz・・(1)として (dy)/(dx)=z+x(dz)/(dx)・・(2) となる(1)から(2)への展開のところがわかりません。 (2)の左辺はyをxで微分しているのがわかるのですが、右辺の意味がわかりません。教えて下さい。

  • 連立微分方程式

    下記の連立微分方程式の解き方を教えていただけませんでしょうか。色々調べたのですが、知識が全く足りず解き方がわかりませんでした。 よろしくお願いします。 dx/dt=α(Ae^(-Bt)+C)-αx-βxy dy/dt=-γ(x^k)(y^l) α,β、γ,A~C、k,lは全て定数です。

  • 微分方程式

    dy/dx-2*x^2*e^x*y+e^x*y^2=2*x-x^4*e^x に対しての次の問のとき方について教えてください (1)x^a が微分方程式の解となるように実数aを求めよ (2) a を(1)で求めたものとする。y=x^a+zを微分方程式に代入して,zの満たす微分方程式を求めよ。 (3)(2)で求めたzの微分方程式を解いて,もとの微分方程式の解yを求めよ (1)についてはa=2という答えだと思うのですが,(2)以降の解き方の手順がわかりません。解法がわかるのであればよろしくおねがいします。

  • 微分方程式の分かりやすい教え方

    下のような微分方程式を分かりやすく教えてあげたいのですが、どのように教えたらよろしいのでしょうか。 (dy/dt)+(dx/dt)=a (a:定数) 参考にさせていただきたいので、皆さんの意見を聞かせてください。

  • 微分方程式

    x=x(t)に関する微分方程式 (dx/dt) = -2x^(2)+t^(-2) , t>0 であるとき v(t) = {x(t)-t^(-1)}^(-1)とおきv(t)に関する微分方程式作れとあるのですが 問題が解けずに困っています。 どなたか教えていただけないでしょうか

  • 微分方程式について

    微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします

  • 微分方程式の解き方を教えてください

    y''+y=1/cosx という微分方程式の同次方程式y''+y=0の一般解は y=Acosx+Bsinx (A,Bは任意定数) ですが、特殊解の解き方が分かりません。  もし(右辺)=cosxなら逆演算子を使ってすぐに解けるのですが、(右辺)=1/cosxとなると分かりません。ご存知の方、お手数ですが教えてください。よろしくお願いします。 ※ y''=d^2y/dx^2