• ベストアンサー
  • すぐに回答を!

微分方程式

微分方程式を2問ほど解けません お願いします 1問目 (x+y)y'+x-y=0 y'=((y/x)-1)/(1+(y/x)) y/xをtとおくと y’=t+xt' 以上より (t-1)/(1+t)=t+xt' (t+1)dt/(t^2+1)=-dx/x・・(1) 左辺=-logx+logC まではわかるのですが(1)の右辺が解けません 2問目 y'+2xy-x-x^3=0 y'+2xy=x^3+x 両辺にexp(x^2)をかけて exp(x^2)y=∫(x^3+x)exp(x^3)dx ここまではできたのですが右辺の積分ができません どちらか片方でも良いので教えてもらえると助かります

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数37
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

途中まで計算しているので、丸投げでもないようですが… 1問目 普通に部分分数分解すれば、 (t+1)/(t^2+1) = (1/2){ (1+i)/(t+i) + (1-i)/(t-i) } となって、(1)の左辺の積分は、 ∫{ (t+1)/(t^2+1) }dt = (1/2){ (1+i) log(t+i) + (1-i) log(t-i) } です。 複素係数が嫌いなら、 (t+1)/(t^2+1) = (1/2)(2t+0)/(t^2+1) + 1/(t^2+1) と変形すればよいのですが、この式の右辺を積分するためには、 ∫dt/(t^2+1) の公式を覚えていないとなりません。 2問目 ∫(x^3+x) exp(x^2) dx の間違いですね。 x^2 = t と置換してみましょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

どうもありがとうございます

関連するQ&A

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 (1) 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) (2)0<x0<1のときt(t≧0)餓変化した場合のx(t)の最大値を求めよ。 (1)は与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) (1/2)*d/dx*(dx/dt)^2=-(1/x^2) 両辺xで積分すると (dx/dt)^2=2/x+2(1-1/X0)(初期条件より) (2) は dt/dxが0すなわち1/xが-(1-1/X0)のときかとおもったのですが よくわからないです。 どなたかおねがいします。。

  • 微分方程式

    こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 問題 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) 少し問題の書き方がおかしいかもしれませんが(微分の書き方)どなたかお願いします。 自分なりにといたのですが 与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) ∫(1/2)*d/dt*(dx/dt)^2=-∫dx/dt*(1/x^2) ????? と与えられたヒント通りにしてそこからどうしたらいいのかわからなくなってしまいました・・・

  • 微分方程式

    微分可能な関数f(x)が, ∫[0&#65374;x]f(t)dt=x^3-3x^2+x+∫[0&#65374;x]tf(x-t)dt をみたしている. このとき, f(x)を求めよ. 与式の左辺をF(x), 右辺をG(x)とおくと, F(x)=G(x) ⇔ F'(x)=G'(x) かつ F(a)=G(a)となるような定数aが存在するー(※) F(0)=G(0)=0より, (※) ⇔ F'(x)=G'(x) h'(x)=f(x), g"(x)=f(x)とすると ∫[0&#65374;x]tf(x-t)dt=[-tf(x-t)][0&#65374;x]+∫[0&#65374;x]F(x-t)dt=-xF(0)-g(0)+g(x) より,与式の両辺をxで微分すると, f(x)=3x^2-6x+1+F(x)-F(0)=3x^2-6x+1+∫[0&#65374;x]f(t)dtー(1) 再びxで微分して, f'(x)=6x-6+f(x) f(x)=yとおくと, dy/dx=6x-6+y 6x+y=uとおくと, dy/dx=du/dx-6より, du/dx=u u≠0のとき,&#160; du/u=dx ⇔∫du/u=∫dx ⇔log|u|=x+c (c:積分定数) ⇔u=±e^(x+c) ⇔y=±e^(x+c)-6x (1)にx=0を代入して,f(0)=1 ⇔ ±e^c=1 ⇔ c=0 ∴y=±e^x-6x また, u=0のとき, y=-6xより,(1)に代入すると, -6x=3x^2-6x+1-3x^2 ⇔ 0=1となり, いかなるxについてもこれは成り立たず不適. ∴f(x)=±e^x-6x 添削お願いします.

  • 同次形微分方程式

    下の“微分方程式を解け”という問題がわかりません。 (1) (x+y)+(x-y)(dy/dx)=0 (2) xy(dy/dx)=x^2+y^2 この2つなんですが、一応、同次形微分方程式の範囲なので y/xの形にしてみたんですが・・・ (1) (x-y)(dy/dx)=-(x+y) (dy/dx)=-(x+y)/(x-y) 右辺の分母分子をxで割る (dy/dx)=-(1+y/x)/(1-y/x) y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx) よって u+x(du/dx)=-(1+u)/(1-u) x(du/dx)=-(1+u)/(1-u) -u x(du/dx)=-(1+u^2)/(1-u) (1-u)du/(1+u^2)=(1/x)dx 両辺を積分というとこの左辺のせきぶんがわかりません。 というかここまでまちがってるかもしれません。 (2) (dy/dx)xy=x^2+y^2 両辺をx^2でわる。 (dy/dx)(y/x)=1+(y/x)^2 y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx)よって u+x(du/dx)=(1+u^2)/u x(du/dx)=(1+u^2)/u -u x(du/dx)=(1/u) udu=(1/x)dx  両辺を積分 (1/2)u^2=logx+C よって(1/2)(y/x)^2=logx+C y^2=2x^2(logx+C) となり、とりあえず答えは合いました。過程はあってますか? あと、最終的な答えの形なんですがy=で答えるとかx=で答えるとか ってありますか?

  • 微分方程式

    微分方程式を解き方についての質問です。 dx/dt=(2a-3x)/(2a-x) (aは定数) という微分方程式なのですが、これはどういう手順で解いていけばいいのでしょうか?左辺と右辺にxとtを分けるというのはわかるのですが、その後どうしていけばいいかわかりません・・・。 どなたかよろしくお願いします。

  • 微分方程式

    dx/dt=a^2-x^2 (aは実数の定数) (1)この微分方程式は1階の線形同次・線形非同次・非線形のどれにあてはまるか。 (2)この微分方程式の一般解を変数分離法で求めよ。 考えたことは(1)は非線形だと思いますが、合っていますか? (2)はdx/(x^2-a^2)=-dtと変形し、両辺積分します。  すると、1/(2a)log(|x-a|/|x+a|) = -t + C このあとx=が分からないです。 教えてください。お願いします

  • 微分方程式と積分

    1.次の微分方程式を解け。 (1)y''+2y'+y=3sin2x 同次微分方程式の一般解はu(x)=(C&#8321;+C&#8322;x)exp(-x) と求められるのですが、非同次微分方程式の特殊解u&#8320;(x)が求められません。 どうやって求めればいいのでしょうか。 (2)y''-5y'+6y=x(exp(x)) 非同次微分方程式の特殊解u&#8320;(x)はどうやって求めたらいいのでしょうか。 2.置換積分によって、次の定積分を求めよ。 1.∫[0→π/2] 1/(1+cosx)dx tanx/2=tと置いた後、どうすればいいのでしょうか。 2.∫[0→a] x^2(√a^2-x^2)dx(a>0) x=asintとおくと、dx=acost dt .∫[0→a] x^2(√a^2-x^2)dx=∫[0→π/2] a^2sin^2t*acos^2t dt このあとどうすればいいのでしょうか。 お願いします。

  • 初歩的な微分方程式について分からないことがあります。

    y´=x/y^2 という微分方程式で、私が読んでいる本に書いてある解法は、 y^2(x)y´(x)=x         xについて両辺を積分すると、 ∫y^2(x)y´(x)dx=∫xdx    …(1) よって 1/3y^3=1/2x^2+C となっていて、(1)のところで両辺を積分していますが、両辺を積分するという演算を行っても良いのでしょうか? そのまま=は成り立つのでしょうか? これは、A=Bのとき、logA=logB というような事と同じと考えて良いのでしょうか? また、本には以下のような別の解法も載っていました。 dy/dx=x/y^2 y^2dy=xdx (両辺にy^2dxをかけて) ∫y^2dy=∫xdx        …(2) よって 1/3y^3=1/2x^2+C (2)のところで、両辺に∫だけを書き加えているのはなぜでしょうか?いつもペアで書く、dxはどうなってしまったのでしょうか? 特に、(2)の左辺ではdxはなく、結果的にdyという表示になっています。yはxの関数であり、xについて積分するのに、(2)の左辺が∫y^2dyとなり、yについて積分するような計算になることがどうしても理解できません。 数学的に厳密でないところや、私の考え方が間違っているところがあるかと思いますが、どなたか教えていただけると幸いです。

  • 1階線形微分方程式について

    こんばんは。よろしくお願いします。 微分方程式で、下記の y’/y = α/(1-x) を解こうと昔の教科書を紐解いているのですが、 一向に進みません。 両辺にdxをかけてy、xで積分して logy = α/2・x^2-αx+C      ↓ y = e^(α/2・x^2-αx+C) まで出たのですが、右辺の()内が2次式になってて ここで行きづってしまいました。 この後ってどうすればよいのでしょうか? どうぞ教えてください。

  • 同次形微分方程式

    次の問題がわかりません。 次の微分方程式を解け。 (1)(x-y)(dy/dx)=2y (2)dy/dx=y/x+sin(y/x) (1)(x-y)(dy/dx)=2y (dy/dx)=2y/(x-y) 右辺の分母分子をxで割る (dy/dx)=2y/x/(1-y/x) y/x=uとするとdy/dx=u+xdu/dxより u+xdu/dx=2u/1-u xdu/dx=2u/1-u -u xdu/dx=u+u^2/1-u (1-u)du/(u+u^2)=dx/x 両辺を積分 の左辺の積分がわかりません。それかもっといい方法あったら 教えてください。 (2)y/x=uとするとdy/dx=u+xdu/dxより u+xdu/dx=u+sinu xdu/dx=sinu du/sinu=dx/x 両辺を積分 の左辺の積分がわかりません。お願いします。