• 締切済み
  • 困ってます

熱力学の変数

気体の入った容器(体積V )の熱力学的性質が気体分子の総運動エネルギーUと体積Vで記述できないことを示したいのですが、どうすればよいでしょうか。 たとえば、一番単純な単原子分子理想気体である場合でも, エントロピーはU,V,Nで表されるので, 明らかにN(物質量)が足りないのは分かるのですが、 その証明がうまくいきません。 そもそも、単原子分子理想気体ではNが足りないのは良いけれども、 気体によっては物質量に無関係にエントロピーが定まるものがあるかもしれないということを排除するにはどうすれば良いのでしょうか。 また、気体の内部エネルギーがNによらないで、ある値U1(>0)が定まるとすると、 どんどん気体を抜いていきN=0の状態でもU1>0となり矛盾する ということも考えたのですが、なんか腑に落ちません。 どうすればよいでしょうか。教えてください。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数129
  • ありがとう数5

みんなの回答

  • 回答No.1

光子気体について調べてみましょう。

共感・感謝の気持ちを伝えよう!

質問者からの補足

どうもありがとうございます。 光子気体の場合、SやUは、Nに依存しないのですね。 そこで、上記の問題にかんして、あらためて考えてみたのですが、 気体分子間の相互運動によるポテンシャルエネルギーをあらわす変数がないと、 熱力学的性質を完全に記述できないような気がしてきました。 でも、なぜポテンシャルエネルギーが必要なのかということが うまく説明できません。 中には、ポテンシャルエネルギーが必要ないものも存在するのではないかという疑問もあります。 教えてください。よろしくお願いします。 (返信が遅くなってすいませんでした)

関連するQ&A

  • 大学の熱力学の問題です。

    (1)定積比熱がC(T) = A + BT で与えられる物質がある(A;B > 0)。これを2つ用意 し、それぞれ温度T1; T2(ただしT1 > T2) にした後で2つを断熱材で覆って体積一 定のまま放置した。十分時間がたったあとの2つの温度を求めよ。 (2)定積比熱が広い温度範囲でC(T) = A/T で与えられる物質がある。これを2つ用意し て(1)と同じ実験を行なったとき到達する温度を求めよ。 (3)単原子分子NA 個よりなる理想気体A と2原子分子NB 個よりよりなる理想気体B がひとつのシリンダー(体積V) に密閉されている。シリンダーは熱を通すピストン で2つに仕切られている。 はじめ気体A は温度T1, 気体B は温度T2 で(ただし T1 > T2) ピストンは固定されていた。シリンダー全体を断熱材で覆ってピストンの 固定をはずし十分時間がたった後の理想気体A の内部エネルギーを求めよ。ただし 単原子(2原子)分子理想気体の比熱は一分子あたり3/2kB( 5/2kB) であることを利用 せよ。

  • 実在気体の熱力学的パラメーターについて

    カルノーサイクルにおいて、実在気体の場合だと理想気体と値が変わる力学的パラメーターが何かが分かりません。 分子間力や分子体積があるので、仕事や熱量が変わること 断熱変化の内部エネルギーが0にならないことは分かりますが エントロピーやギブスの自由エネルギーが実在気体と理想気体で違いがあるかどうかが分かりません。 よろしくお願いします。

  • 熱力学

    空気を平均分子量28.8の2原子分子理想気体と見なし、N個の分子の系が持つ内部エネルギーがU=5NkT/2で与えられているとき、高度1km上昇するごとに何k気温が低下するかを求めよ。ただし、ボルツマン定数k=1.38×10^-23J/k重力の加速度の大きさg=9.8m/s2とする。 解答と解説お願いします。

  • 熱力学の質問です

    今大学で、熱力学のエントロピーについて勉強しているのですが、これまたさっぱり意味がわかりません^^; というより問題を解く上での方針がまったくわかりません・・・ ―――――――――――――――――――――――――――――――――― 理想気体を温度一定に保ったまま、温度Tから温度T´に準静的に変化させた場合にエントロピーの変化はいくらになるのでしょうか・・・ それと 『断熱の壁とピストンに囲まれたT、Vの理想気体を超すばやく膨張させて体積V´にする(気体が追いつかない程度の速さだから、自由膨張と同じで過程で、このとき気体の温度は変化しないそうです)。さらに準静的断熱過程によってもとの体積Vに戻したとき (1)気体の温度ははじめよりも上がっていることを示せ。 (2)また始状態と終状態の間のエントロピーの変化量はいくらになるか。』 という問題なのですが、 (1)はポアソンの公式(名前は忘れたのですが下のような式です。。。)を使って示すんですよね?^^; TV^(γ-1)=CONSTANT (2)についてはどの式をつかえばよいかというのがわかりません>< エントロピーは状態量ってことはなんとかわかります・・・ 問題の解答を書いてくれるとそれはカナリうれしいのですが、 なんか方針だけでもおしえてくださるとカナリ助かります。 ではではよろしくおねがいしますm(_ _)m

  • 熱力学―エントロピーの導出について

    熱力学―エントロピーの導出について 熱力学が苦手でつまずいているのですが・・・ この問題の詳しい答えを教えてください。 「nモルの気体からなる閉じた系が圧力P,体積V,温度T,の状態にある。  この系の準静的変化を考えて,系のエントロピーを導出したい。  閉じた系内の気体の状態方程式は次式で表される。  {P+(an^2/v^2)}(V-nb)=nRT また,この気体の内部エネルギーUは次式で表される。  U=CT-a(n^2/V)  Rは気体定数,a,bおよびCはいずれも定数である。  温度T0,体積V0の基準状態でのエントロピーをS0とすれば,  温度T,体積V,のときのエントロピーSはどのように表されるか。」 ・・・面倒かもしれませんが詳しい導出の手順をお願いします。

  • 熱力学

    なめらかに動くピストンの付いた断面積 S のシリンダーを鉛 直に立て,シリンダー内に単原子分子理想気体を封入した。ピストンとシリンダー は断熱素材でできており,ピストンの質量は無視できる。はじめ,封入された気体 の圧力は P で大気圧と等しく,体積は V0であった(状態 A)。 質量 m のおもりをピストンの上にゆっくりと載せたところ, シリンダー内の気体の体積は V1 (V1<V0) となってピストンは静止した(状態 B)。 重力加速度の大きさを g,単原子分子理想気体の定積モル比熱 Cv=3/ 2R (R は気体定数),定圧モル比熱 Cp=5 /2R とする。また,気体の圧力を P,体積を V,比熱比を γ=Cp/ Cv とすると, 等温変化: PV= 一定 断熱変化: PV ^γ= 一定 が成り立つ。 状態変化 ABにおいて,縦軸に気体の圧力 P,横軸に気体の体積 V を とったグラフの概形として最も適当なものは? お願いします。

  • 気体の状態変化に関する問題です。

    以下の問題なのですが解き方が分かりません。 回答お願いできませんでしょうか? 問題1:気体の状態変化について、以下の問に答えよ。 1. 物質量1 mol の気体に対して,次の性質を満たすような2 種類の気体を考える. 気体A,温度T,体積V の気体の圧力p と内部エネルギーU が,R という定数を用い て,それぞれ, p = RT / V (2) U = 3RT / 2 (3) のようになる気体。 気体B: 温度T,体積V の気体の圧力p と内部エネルギーU が,R,a,b という定数 を用いて,それぞれ, p = ( RT / V - b ) - ( a / V^2 ) (4) U = (3RT / 2) - a/V (5) のようになる気体。 これらの気体に対して,物質量がn[mol] の場合の圧力と内部エネルギーの表式を それぞれ求めよ.何故物質量依存性がそのようになるのかについての理由もきちん と書くこと. ヒント: 圧力は示強変数(体積V と物質量n を両方同時にλ 倍しても,値が変化 しない量),内部エネルギーは示量変数(体積V と物質量n を両方同時にλ 倍する と,値がλ 倍になる量) である. 2. 1 mol の気体A,気体B をそれぞれ体積V1 の容器に封入する.これらの気体に対 して,体積は変化させずに,温度をT1 からT2 まで変化させた場合に,気体が外に 対してする仕事,気体の内部エネルギーの変化,気体が吸収した熱をそれぞれの気 体に対して求めよ.解答はR,a,b,V1,T1,T2 を用いて表すこと.

  • 熱力学の問題が分かりません教えてください

    ある気体が体積V1からV2に可逆的に膨張したとする。また、気体の質量m膨張前の気体の温度と圧力はそれぞれT1,P1膨張後の気体の温度と圧力はそれぞれT2、P2、ガス定数Rとする。ただしこれら以外に必要な記号は自分で定義してその説明を記しておくこと。また気体はすべて理想気体であると仮定せよ。 1この膨張が断熱的に行われた場合の膨張後の温度を膨張前の状態量と膨張後の体積および比熱比kとを用いて表現せよ。ただしその表現は熱力学の第一法則から導きその導出過程を丁寧に示すこと この膨張が等温的に行われた場合の膨張後のエントロピーを膨張前の状態量と膨張後の体積とを用いて表現せよ。ただしその表現は熱力学的の第二法則及び第一法則から導きその導出過程を丁寧に示すこと。 すいませんさっぱりわからないので教えていただけると助かります。

  • 熱力の問題で・・・

    1モルの理想気体がV1からV2へ自由膨張する時の内部エネルギー変化ΔU,エントロピー変化ΔSを求めなさい・・・。という問題で、自由膨張の意味がよくわからないのですが、等温膨張と考えてよいのでしょうか? 物理初心者です・・・。

  • 熱力学

    ------------------------------------------------------ 25℃の理想気体1molを10Lから100Lまで等温膨張させた場合、この気体の内部エネルギー変化ΔU、エンタルピー変化ΔH、エントロピー変化ΔS、ヘルムホルツの自由エネルギー変化ΔFおよびギブスの自由エネルギー変化ΔGを求めよ。ただし、気体定数Rは8.31 J K-1 mol-1 とする。 ------------------------------------------------------ この問題を解くにあたって、 F、S、F、Gの定義はわかるのですが、 ΔU=0(等温変化であるから)以外の変化量がわかりません。 よろしくお願いします。