- 締切済み
- すぐに回答を!
ベクトル
三角形ABCの辺AB上の点Mと辺AC上の点Nとを 結ぶ線分MN上に、三角形ABCの重心Gがある MG:GN=3:2のとき 1.AM:MBとAN:NCを求めよ。 2.Dを辺BCの中点とする。直線MDと直線ACの交点をEとするときAC:CEを求めよ。 という問題の(1)の答えが AG↑に関する2つの式をたてて計算したら AM:MB=5:1,AN:NC=5:4になったんですが あっているでしょうか? どなたか教えてください! あっているでしょうか?

- 数学・算数
- 回答数1
- ありがとう数2
- みんなの回答 (1)
- 専門家の回答
みんなの回答
関連するQ&A
- 中学校幾何の証明
あるサイトに、「対角線ACとBDの交点をOとし、辺AB上の任意の点Pと点Dを結び、対角線ACとの交点をQとおく。線分BQと線分POの交点をRとし、直線ARと辺BCの交点をMとおく。このとき、点Mは、辺BCの中点である。」とあり、 「チェバの定理により、 AP/PB×BS/SO×OQ/QA=1(SはBOとAMの交点) メネラウスの定理により、 AP/PB×BD/DO×OQ/QA=1 よって、 BS/SO=BD/DO=2 このことから、Sは線分BOを、2 : 1 に内分する点である。 △ABCにおいて、点Oは辺ACの中点であるので、Sは△ABCの重心となる。 したがって、中線ASと辺BCの交点であるMは、辺BCの中点となる。」 と証明も書いてあったのですが、BS/SO=BD/DO=2になる理由と、Sが△ABCの重心となる理由が分かりません。非常に分かりにくい説明になってしまいましたが、どなたかご解答お願いします。
- ベストアンサー
- 数学・算数
- ベクトルの問題がこの結果になるのはどうしてでしょう
三角形ABCにおいて, AC=b AB=c とし、BCの中点をM, 角BACの二等分線と辺BCの交点をDとする。 また直線ADに点Bからおろした垂線の足をEとし、直線AMと直線BEの交点をFとする。 この時, ベクトルOF, ベクトルDFをベクトルAB, ベクトルACを用いて表せ。 という問題で、解くには解けたのですが、その結果として、直線ACと直線BFの交点をGとすると (1)BD:DC=c:b, MがBCの中点だったのが、AD、AMの延長線とAGの交点では BF:FG=b:c, EがBG中点と対応が逆転しました。また最終的に (2)AB//DFとなります。 このような結果になるのはなぜでしょうか?こうなる理由があると思うのですがいまいちつかみきれません。 よろしくお願いします!
- 締切済み
- 数学・算数
- ベクトル
三角形ABCにおいて、AB=8、AC=6、角BAC=60°である。 辺ABの中点をM、辺ACを1:2に内分する点をNとすると、 ベクトルAM=ア/イベクトルAB、ベクトルAN=ウ/エベクトルAC であ る。 また、ベクトルABとベクトルACの内積は ベクトルAB・ベクトルAC=オカ である。 点Mを通り辺ABに垂直な直線と点Nを通り辺ACに垂直な直線との交点をPとする。 s、tを実数として、ベクトルAP=sベクトルAB+tベクトルACとおくと ベクトルMP={s-(キ/ク)}ベクトルAB+tベクトルAC であるから、AB垂直MPより ケs+3t=コ であり、同様にAC垂直NPより サs+3t=シ である。したがって s=ス/セ、t=ソ/タ である。 さらに、直線APと直線BCの交点をQとおくと BQ:QC=1:チ/ツである。 ベクトル苦手なので、全然わかりません… 助けてください>_< よろしくお願いします
- ベストアンサー
- 数学・算数
- ベクトルの問題の添削願い{→はベクトルということで}
一辺の長さが2の正四面体ABCDのAB の中点をM、CDを2:1に内分する点をN とする。このとき、|→(MN)|を求めよ。 という問題でまず→(AN)と→(AM)を求めて →(MN)=→(AN)ー{→AM} =-{a/2}+2b/3+c/3 となって |MN|^2を計算して答えが1/3になりました。 とれで答えがあっていますか?
- ベストアンサー
- 数学・算数
- ベクトルの問題です。
△ABCの辺ABの中点をD、辺ACを2:3に内分する点をE、線分CDとBEの交点をPとする。 ベクトルAB=a、ベクトルB=bとしてベクトルAPをベクトルa、ベクトルbであらわしてください。
- ベストアンサー
- 数学・算数
- 数1 図形問題の解答お願いします H24.06
下記が問題文です。【1】~【5】が問題箇所です。 出来れば問題の解答の解説も付けて頂けると嬉しいです。 *図は画像を参照してください。 図のように△ABCの2辺AB、ACの中点をそれぞれD、Eとし、 線分DCを2:1に内分する点をHとして、頂点Aから点Hを通る 直線と線分DEとの交点をG、辺BCとの交点をFとする。 また、DB=4、DG=2、∠ABC=60°である。 (1) 三角形の辺BCの長さは、BC=【1】であり、線分DEの長さはDE=【2】である。 (2) 三角形の辺ACの長さは、AC=【3】である。 (3) この△ABCの面積は、【4】であり、△ADGの面積の【5】である。
- ベストアンサー
- 数学・算数
- ベクトルの問題です。教えてください!
三角形ABCにおいてAP=2/5AB+1/5ACとなる点Pをとる。 直線APと辺BCとの交点をQとする。直線BPと辺ACとの交点D、 直線CPと辺ABとの交点をEとし、直線DEと直線BCとの交点をKとし AKをABとACで表せ。 ベクトルは省略します。 解き方が分かりません。 詳しく解説していただけると嬉しいです。
- ベストアンサー
- 数学・算数
- 3つの外心や垂心に関する問題
△ABCの垂心をHとし、辺BCの中点をM、線分AHの中点をNとする。線分MNの長さは △ABCの外接円の半径に等しいことを、証明せよ。 図がうまく書くことができず、どう解いていったらいいのか分かりません。 △ABCの内心をIとし、直線AIと辺BCの交点をDとする。AB=8、BC=7、AC=4であるとき AI:IDを求めよ。 二等分線を利用するそうですが、その定理がいまいち分かりません。 △ABCの内心をIとするとき、∠BIC=90°+(1/2)∠Aであることを証明せよ。 教科書の解説の一行目に 直線AIと辺BCの交点をDとすると ∠BID=∠BAI+∠ABI となっていました。 どうして∠BAI+∠ABIをしたら∠BIDになるんでしょうか? 問題の解き方も分からず、悩んでいます △ABCにおいて、辺BC,CA,ABに関して、内心Iと対称な点をそれぞれ、 P,Q,Rとするとき、Iは△PQRについてどのような点か。 証明問題が苦手です。 分かりやすく教えてもらいたいです おねがいします。
- ベストアンサー
- 数学・算数