• 締切済み

ベクトル

三角形ABCの辺AB上の点Mと辺AC上の点Nとを 結ぶ線分MN上に、三角形ABCの重心Gがある MG:GN=3:2のとき 1.AM:MBとAN:NCを求めよ。 2.Dを辺BCの中点とする。直線MDと直線ACの交点をEとするときAC:CEを求めよ。 という問題の(1)の答えが AG↑に関する2つの式をたてて計算したら AM:MB=5:1,AN:NC=5:4になったんですが あっているでしょうか? どなたか教えてください! あっているでしょうか?

みんなの回答

  • kumipapa
  • ベストアンサー率55% (246/440)
回答No.1

大丈夫。あっています。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 平面図形の問題です

    問題文は、 三角形ABCの辺AB上の点Mと辺AC上の点Nとを結ぶ直線MN上に、三角形ABCの重心Gがある。MG:GN=3:2のとき (1)AM:MBとAN:NCを求めよ。 (2)Dを辺BCの中点とする。直線MDと直線ACの交点をEとするとき、AC:CEを求めよ。 です。チェバやメネラウスを使いたいのですが・・わかりません。解答お願いします。

  • 中学校幾何の証明

    あるサイトに、「対角線ACとBDの交点をOとし、辺AB上の任意の点Pと点Dを結び、対角線ACとの交点をQとおく。線分BQと線分POの交点をRとし、直線ARと辺BCの交点をMとおく。このとき、点Mは、辺BCの中点である。」とあり、 「チェバの定理により、 AP/PB×BS/SO×OQ/QA=1(SはBOとAMの交点) メネラウスの定理により、  AP/PB×BD/DO×OQ/QA=1 よって、 BS/SO=BD/DO=2     このことから、Sは線分BOを、2 : 1 に内分する点である。 △ABCにおいて、点Oは辺ACの中点であるので、Sは△ABCの重心となる。 したがって、中線ASと辺BCの交点であるMは、辺BCの中点となる。」 と証明も書いてあったのですが、BS/SO=BD/DO=2になる理由と、Sが△ABCの重心となる理由が分かりません。非常に分かりにくい説明になってしまいましたが、どなたかご解答お願いします。

  • ベクトルの問題がこの結果になるのはどうしてでしょう

    三角形ABCにおいて, AC=b AB=c とし、BCの中点をM, 角BACの二等分線と辺BCの交点をDとする。 また直線ADに点Bからおろした垂線の足をEとし、直線AMと直線BEの交点をFとする。 この時, ベクトルOF, ベクトルDFをベクトルAB, ベクトルACを用いて表せ。 という問題で、解くには解けたのですが、その結果として、直線ACと直線BFの交点をGとすると (1)BD:DC=c:b, MがBCの中点だったのが、AD、AMの延長線とAGの交点では BF:FG=b:c, EがBG中点と対応が逆転しました。また最終的に (2)AB//DFとなります。 このような結果になるのはなぜでしょうか?こうなる理由があると思うのですがいまいちつかみきれません。 よろしくお願いします!

  • ベクトル

    平行四辺形ABCDで、辺BCの中点をL、線分DLを2:3に内分する点をM、AMの延長線と辺CDの交点をNとしたときの、AN:AMとDN:CDはどうやって求めたらいいのでしょうか。教えて下さい。お願いします。

  • 平面図形の問題

    模試の過去問なのですが解き方が全く分かりません。 鋭角三角形ABCの2辺AB,AC上にAD=DB,AE=ECを満たすように2点D,Eをとる。 また、線分DEの中点をM,AMとBCの交点をNとする。 このとき、AM:MNの値を求めよ。 どこかに平行線を引けばいいのでしょうか?

  • 数学のベクトルの問題ですが…

    平行四辺形ABCDにおいて、辺BCの中点をLとし、線分DLを2:3に内分する点をMとする。また、直線AMと辺CDの交点をNとする。 (1)AM→をAB→、AD→で表せ 答えは、AM→=5/2AB→+5/4AD→ 解き方がわからないので解き方を詳しく教えてください

  • 改めてベクトルの問題なのですが・・・

    投稿した問題が間違っていたので改めて投稿しました。わざわざ解答頂いた方にはホントに申し訳ありません。改めてご教授よろしくお願いします 三角形ABCにおいて, AC=b AB=c とし、BCの中点をM, 角BACの二等分線と辺BCの交点をDとする。 また直線ADに点Bからおろした垂線の足をEとし、直線AMと直線BEの交点をFとする。 この時, ベクトルAF, ベクトルDFをベクトルAB, ベクトルACを用いて表せ。 という問題で、まず内分点の公式からベクトルAM, ADを表して、直線BEと直線ACの交点をGとすると三角形ABGが二等辺三角形になることからベクトルAGをベクトルACで表わし、点Fは直線BG上に存在し、かつ直線AMの延長線上にも存在することからベクトルAFを二通りで表す、というやりかたで解き、最終的に答えが(以下ABなどの表現はベクトルとしてください…) AD=(b/b+c)AB+(c/b+c)AC, AF=(c/b+c)AB+(c/b+c)AC=(c/b+c)AB+(b/b+c)AG, DF=(c-b/b+c)AB という結果になりました。それで疑問に思ったのが (1)BCについてはBD:DC=c:b, Mが中点だったのが、BGについてはBF:FG=b:c, EがBGの中点と、点M, DとAM, ADの延長線上の点F, Eについて、中点と~に内分する点という関係が逆転して内分比も逆になっています。 また結果として (2)AB//DFとなります。 ガリガリ計算してみると確かにこうなるのですが、このような操作をして二点とその延長線上の二点の対応関係が逆になったこと、DFが結果としてABと平行になることがなんとなく不思議に思います。 こう、この操作は~こういうことをしているからだ!っとすっきりと言える理由ってあるでしょうか。 よろしくお願いします。

  • 数学ベクトル問題

    数学ベクトル問題 四面体ABCDにおいて、辺AB、CDの中点を結ぶ線分の中点をMとすると、直線AMは△BCDの重心Gを通ることを示せ。 という問題の解説お願いします(>_<)

  • ベクトルの問題です。教えてください!

    三角形ABCがあり、AB=AC=√3、cosA=2/3である。辺BCの中点をDとする。 辺ABを2;1に内分する点をEとし、線分ADを直径とする円をKとする。 直線DEとKの交点のうち、D以外の点をFとする。点PがK上をうごくとき、 内積AF・APの取りうる値の範囲を求めよ。 (ベクトルは省略させていただきます) どうやって考えたらいいのか分かりません。 詳しく教えてください! よろしくお願いします。

  • ベクトル

    三角形ABCにおいて、AB=8、AC=6、角BAC=60°である。 辺ABの中点をM、辺ACを1:2に内分する点をNとすると、 ベクトルAM=ア/イベクトルAB、ベクトルAN=ウ/エベクトルAC であ る。 また、ベクトルABとベクトルACの内積は ベクトルAB・ベクトルAC=オカ である。 点Mを通り辺ABに垂直な直線と点Nを通り辺ACに垂直な直線との交点をPとする。 s、tを実数として、ベクトルAP=sベクトルAB+tベクトルACとおくと ベクトルMP={s-(キ/ク)}ベクトルAB+tベクトルAC であるから、AB垂直MPより ケs+3t=コ であり、同様にAC垂直NPより サs+3t=シ である。したがって s=ス/セ、t=ソ/タ である。 さらに、直線APと直線BCの交点をQとおくと BQ:QC=1:チ/ツである。 ベクトル苦手なので、全然わかりません… 助けてください>_< よろしくお願いします

このQ&Aのポイント
  • ブラザーのカラーレーザー複合機 MFC-L3770CDW でGoogleドライブに直接連動できるかを知りたいです。
  • お使いの環境や接続方法、関連するソフト・アプリ、電話回線の種類についてお知らせください。
  • Googleドライブとの連動が可能な場合、便利なファイル管理やバックアップができます。
回答を見る