• 締切済み
  • すぐに回答を!

3項間漸化式

f(1)=2,f(2)=5 f(k+2)=2f(k+1)-f(k)の3項間漸化式からf(k)の一般項を求めるとき、 t^2=2t-1から、 t=1で重解であるから、 f(k+2)-f(k)=f(k+1)-f(k) となると思うのですが、 これは、初項3で、公差1の等差数列ということなのでしょうか? f(k+1)-f(k)=3・1^n-1=3ですが、ここからどのように考えたらいいでしょうか? よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数38
  • ありがとう数2

みんなの回答

  • 回答No.2

Tacosanの言うとおりですね。 k+1とkの差が3で、初項がわかっているのでf(k)=3k-1でしょう。 別に階差数列ととって、たいそうな公式に当てはめなくても、公差3で初項2だから、すぐに一般項は出せると思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

そっそうですね.... お恥ずかしい。コメント有難うございました。 習練いたします。

関連するQ&A

  • 数学Bの問題

    数列に関する問題 下記の問題の解答と解説もお願いします 1, 一般項が次の式で表される数列について (1) an=3n-4 初項から第5項まで (2) an=(2n+1)^2 初項から第5項まで 2. 次の等差数列の一般項と第30項 (1) 初項 -2, 公差 3 (2) 9,3,-3,-9 ・・・ 3,次の等差数列の末項が第何項なのか (1) 3,8,13,・・・,38 (2) -4,-6,-8,・・・,-42 4, 第6項が -2, 第15項が 25, である等差数列{an}の初項,公差,一般項 5, 次の等差数列の和 (1) -2,1,4,7,10,13,16,19 (2)初項 -9, 公差 -4, 項数 36 (3)初項 16, 公差 -4, 項数 n 6, 次の等比数列の一般項 (1) 3,-6,12,-24・・・ (2) 3, -3/2, 3/4, -3/8,・・・ 7, 次の等比数列の末項は第何項か (1) 1,2,4,8・・・,512 (2) 3,12,48・・・,768

  • 数列 (漸化式)

    A[1]=1 A[n+1]=4A[n]+2^n (n=1,2,・・・) {A[n]}の一般項を求めたいのですが 両辺2^nで割って、B[n]=A[n]/2^(n-1)とおくと、 B[n]+1=2(B[n]+1)とおけるから特性方程式より、B[n]が2^n -1と求められました その後はA[n]=・・・ どうすればいいのでしょうか? 等差数列なら A[1]+ΣB[k] k=1~(n-1)という感じで求められたのですが・・・ この数列は等差数列なのか、等比数列なのか・・・ 一見等差数列のようですが、+2^nがついていてこれも定数じゃないから、等差数列ともいえないな・・・と思いました。 階差数列?とはいえないかもしれないけど、B[n]が求まったらその後の段階としてどうすればいいのでしょうか、よろしくおねがいします。

  • 数列について

    等差数列の一般項についての問題なのですが、一般項a_n=a-(n-1)dである等差数列がd≠0のときnの係数が公差という内容が納得いきません。 なぜ、この条件のときにnを公差として考えるのかということ また、公差の定義上、変数であるnを公差として考えていいのか わかる方いらっしゃいましたら教えてください

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

まず f(k+2)-f(k) = f(k+1)-f(k) は f(k+2)-f(k+1) = f(k+1)-f(k) の間違いだね. で, そのあとの 「これは、初項3で、公差1の等差数列ということなのでしょうか?」というのは全く違います. 「これ」は何を指してますか? ついでにいうと次の 「f(k+1)-f(k)=3・1^n-1=3」 は右辺の 3・1^n-1 の意味がわかりません. どこから n が出てきたんでしょうか? とどめとして, 任意の k に対して f(k+1)-f(k)=3 がわかれば, ほとんど終わってるんだけど... どこがわからないんでしょうか?

共感・感謝の気持ちを伝えよう!

質問者からの補足

すみません。 f(k+1)-f(k)=3ということは、階差数列で、 したがって、 f(k)=初項2+3(k-1)=3k-1 でいいのでしょうか?

関連するQ&A

  • 【数学】等差数列ってなんですか?

    【数学】等差数列ってなんですか? 1、8、15、22は初項が1で公差が7の等差数列って、4つの数値が並んでいて4つのうち初項の1つ以外の3つが7の公差だから等差数列って言うのですか? 1、7、15、17だとこれは2つだけだから等差数列とは言わない?

  • 漸化式について

    続けて質問してしまってごめんなさい(><) もう一つ分からない事があるのですが、漸化式で(等差数列)の漸化式と(等比数列)の漸化式と(階差数列)の漸化式の使い分けが全く分かりません。特に(階差数列)の漸化式自体良く分からないので、その辺も詳しく説明お願いします。

  • 【数列】

    初項が5で、公差が7の等差数列{an}と、 初項が6で、公差が4の等差数列{bn}がある。(n=1,2,3、…) (1)ak=b1となる自然数k、lが存在するとき、 lを7で割ったあまりは? (2)数列{an}と{bn}に共通な高を小さい順に並べた数列{cn}の一般項は? (3)数列{cn}で2000以下の項の和Sは? (1)から分かりません… どうとき始めたらよいか、さっぱりです。 解説付きでお願いしたいです!

  • 等差数列の共通項

    初項4,公差3の等差数列{an}と,初項-2,公差5の等差数列{bn}がある。これらの2つの数列で,最初に現れる共通な数を求めよ。 共通な数をcmとすると、どうやって求めればいいのでしょうか? 不明な点は・・・全体的にわかりません。。

  • 等差数列の和

    次の等差数列の、初校から第n項までの 和を求めてください。 (1)4,10、16、22、28、34、40、・・・ (2)初項が36で、公差がー5の等差数列 公式に当てはめて計算したら (1)が 3n^2+n (2)が77n-5n^2 になったんですけど、なんか違ってるみたいですが・・・ 教えてください.よろしくお願いします.

  • 数列の漸化式質問

    教科書で漸化式の記述です。 an+1=pan+qで与えられている数列の求め方 例 a1=3 an+1=3an-4 で定義されている数列を{an}とする 数列{an}は 3 , 5 , 11 , 29 , 83 ,・・・となりますよね。 この数列{an}の各項から2を引くとできる 数列を{an -2}は 1 , 3 , 9 , 27 , 81 , ・・・ となる。数列{an -2}は、初項1 公比3 の等差数列になっている。 数列{an}に対して、数列{an -2}の一般項は an -2=1×3^n-1となっています。 ここが何でn-1なのですか? {an}はn項あると思うのですが・・・ できるだけ詳しい解答お願いします。

  • 等差数列の問題です。

    等差数列の問題でいきなりつまずいています。 初項5、公差3の等差数列{an}について、次の問いに答えよ。 この問題の解答で an=5+(n-1)×3 すなわち an=3n+2 とあるのですが、すなわちの部分が分かりません。 等差数列以前の問題でしょうか? よかったら教えてください。

  • 等差数列の中間の項の問題

    Σベストの例題228の等差数列の中間の項の問題について質問です。 &#65293;8と18との間にn個の数a1,a2,…an入れ -8,a1,a2…,an,18 が公差1/2の等差数列になるようにしたい。個数nをいくらにすればよいか。また、公差2の等差数列になるとき、個数nはいくらか。 という問題で、着眼に末項18は第(n+2)項にあたるとありました。 しかしなぜ(n+2)になるのかがいくら考えてもわかりません。なのでどなたか教えてください。(できればわかりやすくお願いします…)

  • 調和数列

    各項が0でない等差数列1,a2,a3…があり、逆数の作る数列1,1/a2,1/a3....もまた等差数列であるという。anを求めよ。 答がan=1 となるのはなんとなくわかるのですが、なぜ公差が0となるのか一般項の式などから導こうとしてもスッキリしません。途中の式の詳細をご教示いただけないでしょうか。よろしくお願いします。

  • 数学の問題です

    数がいくつかあるのですがすいません><; 1.初項5 公差2の等差数列に対して、初項から第何項までの我がはじめて777より大きくなるか答えよ 2.初項がaで、公差dが自然数である等差数列anが2つの条件  A: a3+a5+a7=93 B:an>100となる最小のnは15 (1)公差d? (2)初項a? (3)a1+a2+・・・・+an>715となる最小のn? 3. 初項が6で 公差dの等差数列がある。初項から第4項までの輪と初項から第12項までの我が等しいとき、第n項から第n+7項までの和をTnとするとき、|Tn|の最小値とそのときのn? 答え: 1.26 2.(1)d=7 (2)a=3 (3)n=15 3・n=5のとき。最小値0 という答えなのですが。やり方などが全く分からないので・・ 出来れば詳しい解説とともにお願いします・・