• 締切済み
  • すぐに回答を!

集合、写像

集合と写像の問題で、 S=T={0,1,2,3,4,5,6,7,8,9}として、 f:S→T「f(x)={xを4で割った余り}」で定義する-たとえばf(5)=1,f(6)=2 場合、f(0)=0だと思うのですが、f(1),f(2),f(3)はどのように考えればよいのでしょうか? f(5)=1であることから、f(1)=f(2)=f(3)=空集合ということでよいのでしょうか? アドバイスをよろしくお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

1÷4=0余り1 2÷4=0余り2 3÷4=0余り3 なので、f(1)=1, f(2)=2, f(3)=3 だと思いますが……。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

そっ そうですよね・・・ 愚問にお答えいただきまして、有り難うございました。

関連するQ&A

  • 写像

    写像 f:R^3→R^2 をf(x,y,z)=(x-y,y-z)で定義するとき (1)fが線形写像であることを示せ (2)R^3⊃S1 := { ( x , x , 2x ) | x∈R } とおくとき、これらはR^3の部分集合であり  f(S1∩S2)⊂≠f(S1)∩f(S2) であることを示せ。 この問題の解答を教えてください、よろしくお願いします。

  • 集合と写像

    集合と写像に関する証明で,そうなるということはわかっているのですが,どのように証明すれば良いかわかりません。 問題は 集合Xから集合Yへの写像f:X→Yによる像に関して,以下を示せ。 (1) 任意の部分集合A,B⊂Xに対して,f(A∩B)⊂f(A)∩f(B) (2) fが単射であるならば,任意の部分集合A,B⊂Xに対して,   f(A∩B)=f(A)∩f(B)が成り立つ (3) Xの任意の部分集合A,B⊂Xに対して,f(A∩B)=f(A)∩f(B)が成り立つならば   fは単射である。 どなたか解説お願いします。

  • 線形写像

    R[x]3→R[x]3 への写像Tが T(f)=xf'(x)+f(1)x で定義されているときにTが線形写像であるかどうか調べる。 という問題なんですけど、教科書にやり方がのってないので、まるっきしわかりません。 分かる方いらっしゃいましたらお願いします。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 集合と写像

    集合と写像の問題です。 A、B:集合、写像:f、逆像:f^-1において以下の性質を証明せよとの問題です。 f(A∩B)⊂f(A)∩f(B) を証明しかつその逆f(A∩B)⊃f(A)∩f(B)が成り立たないことを反例を立てて示せ。 f(A∩B)⊂f(A)∩f(B)の証明は あるx∈A∩B⇒x∈Aかつx∈Bである。 (A∩B)⊂A (A∩B)⊂B より f(A∩B)⊂f(A) かつ f(A∩B)⊂f(B) よって f(A∩B)⊂f(A)∩f(B) で証明できてると思うんですがその逆の反例が思いつきません。 どなたかf(A∩B)⊃f(A)∩f(B) が成り立たないことを示せる方いらっしゃったらご教授願います。

  • 写像が全然わからなくて困っています。

    写像が全然わからなくて困っています。 写像f : X → Y を考える.S ⊂ X, T ⊂ X かつU ⊂ Y, V ⊂ Y とする.以下の ことを示せ. 1. S ⊂ T ⇒ f(S) ⊂ f(T) 2. U ⊂ V ⇒ f-1(U) ⊂ f-1(V ) 3. f(S U T) = f(S)Uf(T) 4. f^-1(U U V ) = f^-1(U)Uf^-1(V ) これらを示す方法を詳しく教えてください。宜しくお願いします。

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

  •  集合と写像 の問題解説お願いします

    数学の集合と写像について教えてください。 期末試験の過去問なのですが、解説・回答がなくて困っています! 試験直前なので どうぞよろしくお願いします。 X={3,4,5}  Y={5,6,}とする。   (1) XからYへの単射を1つ求めよ。 (2) XからYへの全射を1つ求めよ。 (3) (1)(2)で求めた写像の合成写像を求めよ。 (4) XからYへの写像で全射であるものを全て述べ、その写像 f2 = f. ○ f が恒等写像となるも   のを全て求めよ。 (5) XからYへの写像で単射であるものを全て述べ、その写像 f3 = f ○ f ○ f が恒等写像とな   るものを全て求めよ。 解説も付けていただけるとたすかります。 よろしくお願い致します。

  • 連続写像r:X→Aならrは商写像となる事を示せ

    下記の問題で質問です。 (1) Let p:X→Y be a continuous map. Show that if there is a continuous map f:X→Y such that pf equals the identity map of Y,then p is a quotient map. (2) If A⊂X,a retraction of X onto A is a continuous map r:X→A such that r(a)=a for each a∈A. Show that a retraction is a quotient map. (1) p:X→Yを連続写像とせよ。もし合成写像pfがYの恒等写像になるような連続写像f:Y→Xが存在するならpは商写像である事を示せ。 (2) もしA⊂XならXからAへの上へのretraction(引き込み,左逆写像)は∀a∈Aに対してr(a)=aとなる連続写像r:X→Aならrは商写像となる事を示せ。 (1)については f=p^-1の関係になっていてpもp^-1も連続で全単射と言ってあるのだから ∀p^-1(s)∈T(TはXの位相)⇔s∈S(SはYの位相)が言えるから pは商写像。 で正解でしょうか? (2)については 引き込みの定義はf:X→YでB⊂YでBがf(X)の部分集合でない時の逆像f^-1(B)をfによるBの引き戻しとか言ったりするのだと思います。 rはontoと言っているので全射と分かる。 Aの位相として相対位相T_a:={A∩t∈2^X;t∈T} (但しTはXの位相)が取れる。 そこでr^-1(s)∈T⇔s∈T_aを示す。 s∈T_a⇒r^-1(s)∈Tはrが連続である事から直ちに言える。 r^-1(s)∈T⇒s∈T_aである事は r^-1(s)∈T…(2)を採るとs=r(r^-1(s))(∵rは全射)=r^-1(s) (もしr^-1(s)⊂Aなら) …(3) (∵rの定義) ∈T_a (∵(2),(3)と相対位相の定義) しかしr^-1(s)がAに含まれていない場合はこのsは何ともいえません。 どうすればこの場合もs∈T_aが導けますでしょうか?

  • 集合、濃度の問題について教えてください。

     (1)は解決できました。(2)、(3)の考え方と解法がつかめません。よろしくお願いします。                                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (2)について、0^(♯X)は、問題文の定義より、♯(Φ^X)と書き表せます。 ただ、∮;X→Φという写像の全射かつ単射を示すにはどうすればよいでしょうか? また、どのような答えにいきつくのでしょうか? (3)については、0しか含まない集合Zから0しか含まない集合Wという写像kを考えて、全単射がわかるという形で大丈夫でしょうか? ※(1)は以下のようになりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射が存在すればいい。  Φが全単射で示された。