• 締切済み
  • すぐに回答を!

写像

写像 f:R^3→R^2 をf(x,y,z)=(x-y,y-z)で定義するとき (1)fが線形写像であることを示せ (2)R^3⊃S1 := { ( x , x , 2x ) | x∈R } とおくとき、これらはR^3の部分集合であり  f(S1∩S2)⊂≠f(S1)∩f(S2) であることを示せ。 この問題の解答を教えてください、よろしくお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

 こんにちは。  (1)の回答です。参考程度にどうぞ。ただし、お読みになる前に線形写像の定義の確認をすることを勧めます。証明の書き方は完全ではないと思うので、ご自分で納得のいくものにしてください。  (1) X1=(x1,y1,z1) ,X2(x2,y2,z2) ∈ R^3 a ∈ R^1 ; a X = (ax,ay,az) として f(X1+X2) = (x1-y1 + x2 -y2, y2-z2 + y2-z2) = f(X1) + f(X2) f(aX) = (a(x-y),a(y-z)) = a f(X)  よって題意は示された。  (2)はS2の定義を書いていただかないと回答できません。S2の定義を追加してください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 線形代数>線形変換>表現行列

    【問題】  次のR^3→R^3の写像が線形変換かどうか調べよ。もし線形変換ならば、その表現行列も示せ。   x       x+y+z  ( y ) |→ ( 0 )   z       xyz  /* ----------------------------------------------------------------------- */ と言う問題です。 解答例として以下のように挙げられているのですが、解らない部分があります。 /* ----------------------------------------------------------------------- */ 【解答例】   x      x+y+z  f( y ) = (  0  )  とおく。   z       xyz      0      1        1      1+2+1     4 f(( 1 ) + ( 1 )) = f( 2 ) = (  0  ) = ( 0 )    1      0        1      1*2*1     2   0       1      0+1+1     1+1+0     4 f( 1 ) + f( 1 ) = (  0  ) + (  0  ) = ( 0 )   1       0      0*1*1     1*1*0     0 なので、    0      1        0       1 f(( 1 ) + ( 1 )) ≠ f( 1 ) + f( 1 )    1      0        1       0 よって写像の線形性を満たさないので線形変換ではない。・・・(答) /* ----------------------------------------------------------------------- */ 上記解答例の   0         1 ( 1 ) および ( 1 ) はどこからくるのですか?   1         0 あとの部分は解ります。宜しくお願いします。

  • 線形写像について

    教科書や参考文献を見ても、線形写像のことがわかりやすく書かれてありません。しかし、問題としては、かなりのウェイトで出てくるのです。そこでですが、f:R^3→R^4,f([x,y,z,w])=[x-y+z+w,x+2z-w,x+y+3z-3w]の線形写像の像と核の基底と次元の求め方を教えてください。

  • 写像についての問題

    写像についての質問です。 解答できるものだけでよいのでお願いします。 次の集合X,Yについて指定された性質を持つ写像f:X→Yの例を一つ挙げよ。ただし、Rは実数全体の集合、Zは整数全体の集合。 1、X=R、Y={x∈Z│x≧-1}, fは単射でないが、全射である 2、X=R, Y={x∈R| x >0} fは単射であるが、全射ではない。 3、X={x∈R | 1≦x≦3}, Y={x∈R | 2≦x≦5} fは全単射である。

  • 合成写像(元の定義域)

    集合XからYへの写像をf、集合YからZへの写像をgとする。 合成写像(f・g)(x)を考えるとき、Z⊂Xでなければならない理由がわかりません。 教えてください。 g(x)はYからZへの写像です。fはXからYへの写像ですから、Zはfの定義域(X)に含まれていなくてはならないのですが、Z⊆Xでもよい気がするのですがいかがでしょうか?

  • 写像について

    写像について (1)(-1,1)を(-∞,∞)に全単射する写像の例を一つ挙げよ。あげた写像が全単射といえる理由も述べよ。 (2)f:R^2→R^2,f(x,y)=(x+y,xy)とするときf(D)を求め図示せよ。 D={(x,y)|x^2+y^2<1,x>0,y≦0} の二問の解答への方向性が見えません。 全射、単射についての定義はわっかていますが・・・。 よろしくお願いいたします。

  • 線形写像と線形変換

    線形写像と線形変換 V , W をK上のベクトル空間とする。このときベクトル空間Vからベクトル空間Wへの写像fが、 Vの任意の要素x,yに対してf(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fをVからWへの線形写像と言う。 これが線形写像の定義です。 別の記載では、R^n,R^mをk上のベクトル空間とする。このときベクトル空間R^n からベクトル空間R^m への写像f がR^nの任意の要素x,yに対して f(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fを R^n からR^m への線形写像という。 ここで、テキストにはfがVからV自身への線形写像である時fを線形変換と呼ぶと記載されているのですが、 「VからV自身への線形写像」のイメージがあまりつきません・・・ 次元が同じ場合であれば線形変換?と思ったのですが間違いでしょうか? よろしくお願い致します。

  • 線形写像

    R[x]3→R[x]3 への写像Tが T(f)=xf'(x)+f(1)x で定義されているときにTが線形写像であるかどうか調べる。 という問題なんですけど、教科書にやり方がのってないので、まるっきしわかりません。 分かる方いらっしゃいましたらお願いします。

  • y,z∈V'(Vの線形写像全体の集合)[x,y]=0→[x,z]=0は∃α∋z=αyを意味する事を示せ。

    おはようございます。 [Q] Prove the following statement: Let y,z∈V'(set of all linear functionals on V) [x,y]=0→[x,z]=0 implies that ∃α∋z=αy. という問題に悪戦苦闘しています。 linear functionalは線形汎写像(終集合がRやCの線形写像)の意味。 この問題はつまり、 "y(x)=0⇒z(x)=0"が成立するならば 線形写像z:V→R(or C) はαyという写像(zはyのスカラー倍になっているような線形写像)。 つまり、 V∋∀x→z(x):=α(y(x))という写像 である事を示せ。 という意味だと解釈しています(勘違いしておりましたらご指摘ください)。 その場合,どのように証明すればよいのでしょうか?

  • 写像

    線形空間V={ax^2+bx+c |a,b,c€R} fは線形空間V上の線形変換であり、 f(1+x)=1,f(x+x^2)=x,f(1+x^2)=x^2としたとき、 線形写像fが単射であることを示し、次元定理の成立を 直接的に示せ。 という問題内容なのですが、証明が苦手なもので 解答に困っています。 どのように解答すればよいでしょうか?

  • 写像の合成と定義域

    写像について、逆写像と定義域がわからないので質問します。 問題は、Aを正の偶数全体からなる集合、Bを正の奇数全体からなる集合として、f:A→Bをf(x)=x-1によって定義する(1)f^(-1)を求めよ。(2)f^(-1)・f、f・f^(-1)(・は合成写像の記号のつもりです。)を求めてそれらの定義域、値域を明らかにせよ。 というものです。 解答(1) fはAからBの上への1対1の写像である・・・(ア)から、その逆写像f^(-1)は存在して、f^(-1)はBからAの上への1対1の写像である・・・(イ) またf(x)=x-1よりx=f^(-1)(x-1)、x-1=yとおくと、x=y+1よりy+1=f^(-1)(y)すなわちf^(-1)(x)=x+1。 (2) {f^(-1)・f}(x)=f^(-1){f(x)}=f(x)+1=(x-1)+1=x、{f・f^(-1)}(x)=f{f^(-1)(x)}={f^(-1)(x)}-1=x+1-1=x、 ここで(ア)(イ)よりf^(-1)・fはAからAの上への1対1の写像で、f・f^(-1)はBからBの上への1対1の写像である。したがって、f^(-1)・fの定義域、値域ともにA、f・f^(-1)の定義域、値域ともにB。 自分なりに考えてみて疑問があるのですが、問題(1)はf(x)の逆関数を求めればよい、しかしy+1=f^(-1)(y)としては、逆関数を求めるときのxとyを入れ替えるができないし、解答ではyをxに書き換えるといったことをしている。これが最初の疑問です。問題(2)では{f^(-1)・f}(x)のxはAの任意の要素で、{f・f^(-1)}(x)のxはBの任意の要素であると思うのですが、これはf(x)のxはAの任意の要素で、{f^(-1)(x)}のxはBの任意の要素であり。{f^(-1)・f}(x)=f^(-1){f(x)}とf^(-1)の要素がf(x)、f(x)の要素xはAの任意の要素だからと考えました。同様に{f・f^(-1)}(x)も考えましたが、自分の考えがあっているか疑問です。 どなたか、なぜ問題(1)でyをxに書き換えるかをしてよい理由と、問題(2)で自分の考えがあっているかと、間違っているときは、なぜ解答のようになるのかを教えてください。お願いします。