• ベストアンサー

導体内の電場はなぜ0?

導体の定義から、導体の内部には電場は存在しない、とあるのですが、いまいちピンと来ません。なぜ、そう言えるんでしょか…? また、ある問題で、ある導体球に正の電荷Qが与えられていて、電荷は球の表面に、対称に分布している。という問題文があり、その回答には、「導体球の表面に電荷Qが分布しているので、半径rの球の内側には電荷はない」と解説があるのですが、言っていることは同じだと思うのですが、これもよく分かりません…。なぜ表面にQ帯電していると、内側には電荷がないのでしょう?何となく負の電荷がありそうな気がするのですが…? とても頭の中で混乱しているのかもしれません。よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • foobar
  • ベストアンサー率44% (1423/3185)
回答No.5

#2です 「「内部で自由に移動でき」ていた電荷」は結局導体表面に(内部が棟電位になるように)集まります。 (導体表面では、電荷はそこから外側には移動できない(自由には移動できなくなる)ので。) 導体内部と表面では、電荷の動ける自由度が変わります。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (4)

  • cyototu
  • ベストアンサー率28% (393/1368)
回答No.4

#3です。 そこでの説明に、細かいところで誤植がありました。 力のフーリエ変換ではなくて、力のポテンシャルエネルギーのフーリエ変換です。 力が距離の逆2乗に比例するときは、そのポテンシャルエネルギーは距離の逆数に比例します。

全文を見る
すると、全ての回答が全文表示されます。
  • cyototu
  • ベストアンサー率28% (393/1368)
回答No.3

貴方の質問は、電磁力に関してこの宇宙の最も基本的な性質に関わった、本質を突いた質問です。我々の経験に依ると、二つの電荷の間に働く力は距離の2乗に反比例しています(クーロンの法則)。ここでは解説をしませんが、そのクーロンの法則が正しいとすると、それから電磁気学の一つの基本法則であるガウスの法則が帰納的に導かれます。そして、そのガウスの法則の帰結として、「導体の内部には電場は存在しない」という結論が出てきます。この論理の筋道は、電磁気学の教科書で勉強して納得してください。 さて、貴方の質問が何故、宇宙の根幹の問題と関わっているかということを説明します。物理学では距離の距離の2乗に反比例する力のことを「長距離力」といって、それ以外の力とは特別に区別しています。長距離力の例は、重力と電気力です。それに対して、距離の逆数の2乗よりも速く減衰する力を「短距離力」と言います。短距離力の例は、分子間力等です。 物理学では、空間座標に依存した量を取り扱う場合、直接その座標依存性を調べること重要ですが、それと同時にその量をフーリエ変換して、座標に共役な「波数」という量でその物理量の性質を調べることも大変重要です。波数は座標に相補的な量であり、その物理量について座標表示では得られない様々な相補的な情報を与えてくれるからです。 そこで、短距離力をフーリエ変換してみると、その関数は波数に関して何ら異常なことを示さない関数になっていますが、長距離力の場合フーリエ変換は波数がゼロのところで対数的に発散してしまう、特異な関数になっています。対数発散とは、発散の中で最も遅い発散ですので、力が距離の逆2乗よりどんなにわずかに早く減数しても、フーリエ変換は正常ですが、逆2乗だと発散する、ちょうど境目になっています。そして、もしこの長距離力が本当に存在しているとすると、この宇宙に様々な特異な現象がこの対数発散の帰結として存在することになります。ですから、長距離力が本当にあるのかないのかを確認することは、この宇宙の個性を確認るために大変重要になります。 ところが、実際の電気力を測って、その力を距離 r の -α 乗として、はたして α が本当に2なのか(すなわち長距離力なのか)2より大きいのか(すなわち短距離力)なのかを調べるのは、実験的に途轍もなく難しいのです。 それに対して、導体で囲まれた空間を作って、その導体に巨大な電荷を帯電させたときに、その内部での電場を測定することは、比較的に簡単にかつ高い精度で測定が出来ます。実験の結果、そのように巨大な電荷を帯電させても、その空間内部の電荷がほとんどゼロであることが確認されました。その、ほとんどゼロの値から、ガウスの法則を使ってαの値を逆算した結果、正確な桁数は忘れましたが、とても高い精度でαが2になっていることが確認されたそうです。その結果、この宇宙は長距離力によって特徴付けられる個性を持ていることが、高い精度で確認されたことになっております。 このように、貴方の質問は宇宙の根幹に関わった質問ですので、質問者さんも是非、ガウスの法則を理解してください。

nabewari
質問者

お礼

ありがとうございます。 >そして、そのガウスの法則の帰結として、「導体の内部には電場は存在しない」という結論が出てきます。 ガウスの法則からですか…。どうやらもう少し調べる必要がありそうです…。

全文を見る
すると、全ての回答が全文表示されます。
  • foobar
  • ベストアンサー率44% (1423/3185)
回答No.2

導体内部の電界が0 導体を、「電荷が内部で自由に移動できるもの」として考えると、、 もし電界があれば電荷(荷電粒子)に力が作用し、電荷が移動します。 結果、落ち着く先は電荷にかかる力が0(電界が0)の状態になります。 導体内に電荷が無い 「導体内でE=0(一定)」から出てきます。 ガウスの法則より、微小体積内の電荷の量と微小体積を通るEの変化量は比例するので、(E=一定)→(微小体積内の電荷は0)になり、結果、導体内部では電荷は0になります。

nabewari
質問者

お礼

回答ありがとうございます。 電場が0になる、というのはイメージできたんですが、じゃあ「内部で自由に移動でき」ていた電荷はどこにいったんだろう?という疑問があるのですが…。 というかいまさらですが、導体の「表面」と「内部」とは別のものとして考えるのですよね…?

全文を見る
すると、全ての回答が全文表示されます。
  • lv4u
  • ベストアンサー率27% (1862/6715)
回答No.1

>>導体の定義から、導体の内部には電場は存在しない、とあるのですが、いまいちピンと来ません。なぜ、そう言えるんでしょか…? 原子や電子のレベルでみれば、電場もあるでしょうけど、マクロ的にみた導線や球体の外部からの視点なら、そういうように考えて計算しても、結果は変わらないって思えばいいのではないでしょうか? 電磁気学の教科書って、読んでいて「????」ってなる記述が多いもんですけど、深くつっこむと物理の最先端にいっちゃって答えが得られない、つまりは試験問題が作れないようになる気がします。いろいろと疑問はあるけど、実験結果は、この計算式で得られるから、「暫定的な真理として受け入れよ」ってことでいいのでは? みんなが判るように教科書を書くと、学生からはもちろんですが、同業の研究者からも「その解釈は間違っている。教科書になるような本に嘘を書いえてゃいけない!!」って突っ込みがくるものです。なので、「嵐を呼ぶ話題」は、ささっと逃げるようにあっさりと短く書くのが大人の知恵だと解釈しています。

nabewari
質問者

お礼

回答ありがとうございます。 やはり、さしあたってそう解釈するのが、よさそうな気がしますね。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 帯電した導体の表面の電位、電場: 無限大では?

    こんにちは、いつも勉強させて頂いております。 今回、ふとした疑問が湧き、それが説明できずに悩んでおり、どうか回答頂ければと思います。 帯電した球形の導体があります。その半径はRとします。 総電荷量をQとします。この導体の表面の電位、電場はいくつか、という問題、というか公式ですが、 電位 = k (Q/R) 電場 = k (Q/R^2) で与えられると教わりました。 (ある点電荷Qがつくる、距離Rはなれた点での電位、電場ではありません。あくまで帯電した球体の表面の電位、表面の電場です) なぜ、無限大ではないのでしょうか。 といいますのも、「帯電した導体では電荷は表面に存在する」、はずです。すると、 表面の電位というのは、電荷から距離ゼロ離れた場所の電位、電場であり、クーロン式(上式と同じ)からも、電場、電位は無限大になるのではないでしょうか。無限遠から、この帯電した導体の表面まで点電荷を移動するのに要する仕事、という観点から考えても、その仕事は無限大になると考えます(点電荷を最表面にもってくると、電場が無限大のため、仕事も無限大)。 いかがでしょうか。何か誤解している部分があるかもしれませんが、不躾ながらその点もどうかご指摘頂ければ幸いと思っておりまして、どうぞ宜しくお願い致します。

  • 分子電場(ローレンツ場)を導く過程

    一様な電場E_0の中の金属球の表面に静電誘導で現れる電荷密度を求めよ. この問題で,半径Rの球に,正負の電荷が密度ρ,-ρで同じ量だけ一様に分布し重なっていて,この正電荷の分布を+x方向にδだけずらすとき,表面に現れる電荷によって生じる導体内部の電場は-x方向を向いた一様な電場であることをまず示そう.密度ρで一様に帯電した半径Rの球内の点Pの電場は,中心からの位置ベクトルをr(↑)とすると,E(r)=ρr/3εで与えられる.(E,rはベクトル,εは真空での誘電率)したがって,点Pの正,負の殿下の中心からの位置ベクトルをr'(↑),r(↑)とすると,ずれで表面に誘導された電荷による点Pの電場は(ρ/3ε)(r'-r)=-(ρ/3ε)δ(r',r,δはベクトル)である.したがって,球内の電場は-x方向を向いた一様な電場になる.とありますが,表面に電荷が誘導されることはわかりますし,-x方向を向くことも直感的にわかります. しかし,ここで球内に一様に密度ρで帯電している場合の内部での電場をガウスの法則を用いてE(r)=ρr/3εとして用いていますが,なぜこのときの中心の位置ベクトルrをずれのベクトルであるδで表現できるのですか? それにこの場合は球の表面にプラス電荷とマイナス電荷が現れるだけで,その内部は中和しているんですよね? 表面に現れているだけなのになぜ球内に一様に密度ρで分布している場合の電場を用いているのかよくわかりません. また問題としてよくみかける,球内に密度ρで一様に分布している場合の電場を求めよ.という問題では,球内に例えば+電荷のみが均一に分布しているということですよね? この場合は-電荷も現れているしどういうことなのかよくわからなくなってきました. この結果から分子電場E_M=E+P/3ε(Eは巨視的な電場ベクトル,Pは分極ベクトル)が分子の形を球と近似すると導かれるようなのですが,なぜ導かれるのでしょうか・・・ 分かる方がいらっしゃいましたら教えていただけると本当に助かります. よろしくお願いします.

  • 教えてください

    ・半径rの球に電荷Qが一様に分布している。このとき電場の持つエネルギーを求めよ。 ・半径rの導体球に電荷Qが分布している。このとき電場の持つエネルギーを求めよ。 この二つの問題は、どのように解けばいいのですか? できるだけ詳しく、丁寧に教えてください。お願いします。

  • 導体の電子分布 / 空洞のある導体に電荷を置く

    こんにちは、二つお伺いします。 絵を用意したのですが、アップして画質が落ちることがよくあるようなので、その場合はご了承下さい。 質問1 導体内部は電場がゼロである、と理解しております。たとえ、導体内部に空洞があっても、空洞での電場もゼロ、そして導体がどんな非対称な形状をしていようともやはり、導体内部、空洞でも電場はゼロと理解しております。これは、導体の自由電子が、そうなるように(導体内部、空洞での電場がゼロとなるように)動き、配置されたがために起こると考えておりますがいかがでしょうか。すると、非対称な形状の場合、あるところでは電子の密度が高く、あるところでは低い、という偏った電子分布になると考えているのですが、正しいでしょうか。 質問2 導体の内部に空洞があり、その空洞内に電荷をおきます。この場合でも、導体内部の電子が動き、最終的には、導体の内部と空洞内の電場がゼロになるのでしょうか。それとも、内部、または空洞内のいずれか、もしくは両方の電場はゼロにはならないのでしょうか。 質問2のきっかけはある問題集の例題です。その内容も添付の絵に示させて頂きました。 内容は、「二つの導体球がある。ひとつは空洞であり、空洞内にもうひとつの小さな導体球がある(二つの球体は中心を共有している)。その中心から8cmの距離にある点Pでの電場が15000 N/C(方向は中心向き)であった。このとき、小さな導体球の総電荷Q1と、大きな導体球の空洞の内壁表面の総電荷量Q2を求めよ。(注意)Q2は、内壁表面の電荷量であって、大きな導体球の総電荷量ではない。」 というものです。この問題を見たときに、まず、質問2にて申し上げた、「導体の空洞では電場は0」という安直に覚えていたものが崩壊しました。どうやら「導体の空洞では電場は0」というのはあくまでその空洞に電荷が無い場合のことのようだと、今では理解しております。 そして、この例題の解答は、次の通りでした。 「導体の空洞では電場は0」にも関わらず、小さな導体球が存在することよって、P点の電場が形成されている。半径8cmのガウス面を考える。すると 電場 = ガウス面内の総電荷量 Q /(ガウス面の面積 4πr^2 x 誘電率ε) ・・・・(1) よりもとまる、QがQ1となる (ただし、電場の方向から考えて、Q1は負の値) 一方で、「導体の内部の電場は0」である。大きな導体球の内部を通るガウス面を考える。(1)において、電場 = 0を代入すると、このガウス面内の総電荷量は正味ゼロとならなければならない、したがって、Q2はQ1と正負符号逆で絶対値の等しい値、つまり-Q1、となる。 この解答方法が引っかかりました。Q1を求める前半の解説では、小さな導体球によって、空洞内の電場はゼロではなくなっている、としているのにも関わらず、Q2を求める後半の解説では、小さな導体球の影響など触れもせず、「導体内部の電場は0」としてしまっております。なぜ、小さな導体球に影響を受けて、空洞で電場は生じるのに、大きな導体球の内部に電場が生じないのでしょうか。 文章が分かり難いようでしたら、書き直しますゆえ、お知らせ下さい。 どうか宜しくお願い致します。

  • 電磁気学 電場

    「半径aの絶縁体球を正の電荷密度ρで一様に帯電させた時にできる、電場の向きを図で示しなさい。」 という問題です。添付した画像のように図を描いてみたのですが、正しいでしょうか。絶縁体球の外部と内部で電場の向きは変わらないと思うのですが・・・・・・・ それから、球対称に電荷が分布しているはずなので、絶縁体球と同心の半径rの球状のガウス面を任意で設定し、電場の向きを示す矢印を2本(外部と内部)だけ書き入れたのですが、適切な書き方でしょうか。

  • ガウスの法則の電場の求め方についての質問です

    問.半径aの級の中心に+Qの点電荷があり、点電荷を覆うように中心から半径aの球表面に一様な密度で負電荷が分布しており、その総量を-Qとする。このとき、球の中心からの距離をrとし、球の内外の電場をガウスの法則を用いて求めよ。 という問題で、r>aのとき-Qと+Qによって打ち消されE(r)=0になるのはわかるのですが、 r<aのときは「内部の正電荷のみ電場に関連する」 よって E(r) = Q/4πεr^2 とあります。 内部でも表面の電荷-Qが影響し2倍になるように感じるのですが違うのでしょうか。 どなたかよろしくお願いします。

  • 同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量

    半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。 外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。 (1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。 (2)外側球殻と内側球殻の電位差Vを求めよ。 (3)このコンデンサーの電気容量を求めよ。 という問題が解けません。 特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。 どなたか解いていただけませんか。 よろしくお願いします。

  • 中空導体球の問題です! 至急よろしくお願いします

    内半径a,外半径bの中空導体球がある。 共通の中心Oには、点電荷+qがあり、さらにこの中空導体球も帯電していて、総電荷として+Qの電荷をもってるとする。中心Oからの距離をrとして各領域での、電場の大きさをもとめなさい。 です。至急お願いします!!

  • ガウスの法則 静電誘導

    教科書、参考書など手持ちの本を見たのですが、どうしても分からないです。 中空の導体球に、正電荷+Qを与えた時、中空導体球の内外の表面に分布する電荷q1と電荷q2を、以下の事柄を使って求めよ。 『静電誘導により、導体内部の電場は0である。』 『電荷保存則により、q1+q2=Qである。』 『ここでは、球の中心を中心とする半径rの球面上での電場は、その球面内の全電荷と等しい点電荷を球の中心に置いた場合の電場と一致する。』

  • 導体球殻の電位

    真空中におかれた半径bの導体球殻2を、電荷Q1が帯電している半径aの導電球殻1の内側に中心を合わせて設置し、電荷Q2を帯電させた。このときの導体球殻1の電位及び導体球殻2の電位を求めよ。 E=-∇φ φ=-∫(Q/4πεr^2)dr ここまではわかるのですが、積分範囲がわかりません。 詳しい解説お願いします。

このQ&Aのポイント
  • キッチンに出てくるアリの駆除方法を教えてください。
  • アリがキッチンに出てくると困っています。駆除するための方法を教えてください。
  • 質問者はキッチンでアリが出てくることに困っています。アリの駆除方法を教えてください。
回答を見る