• 締切済み

次の回転移動を表す行列をもとめよ。

connykellyの回答

回答No.3

ココ↓のサイトを参照しましょう。 http://www.metro-hs.ac.jp/rs/sinohara/zahyou_rot/zahyou_rotate.htm

参考URL:
http://www.metro-hs.ac.jp/rs/sinohara/zahyou_rot/zahyou_rotate.htm

関連するQ&A

  • 回転行列の定義について

    回転行列の定義について 点P(x,y)を原点Oの周りに角θだけ回転させた点をP'(x',y')とすると (x')=(cosθ -sinθ)(x) (y')  (sinθ  cosθ)(y) ※上下2段で1つの行列と見てください と表せ,この (cosθ -sinθ) (sinθ   cosθ) を回転行列と呼ぶ。これは理解できるのですが          (x' y')=(x y)( cosθ sinθ)          (-sinθ cosθ) と考えることもできますよね。この (  cosθ sinθ) (-sinθ cosθ) を回転行列と呼ぶことはできないのでしょうか。 むしろ座標は横に並べて書く方が慣れているので、できればこちらで考えたいのですが…。 もしできるのであれば、実用的(試験等)にこちらの考え方を使うことはできるのでしょうか。 また、できないのであれば前者は○で後者が×となる理由があるのでしょうか。

  • なぜ回転行列が以下のようになるのでしょうか。

    3次元の座標系があります。軸はX,Y,Zです。 Cθ=cosθ Sθ=sinθ でなぜ画像のようになるのかが分かりません。 画像の左上がX軸に関してθだけ回転させた回転行列。 同様に、右はY軸に関して、左下はZ軸に関してθだけ回転させた回転行列です。 cosθ,sinθのつく場所はだいたい分かってきたのですが、符号がどうしてそうなるのかが分かりません。 各軸を原点から見て時計回りを正とするそうです。 よろしくお願いします。

  • 二次の回転行列関連です

    浪人生です 以下行列を(a_11,a_12,a_21,a_22)の順番で書かせていただきます まず原点を中心とする回転変換は(cosθ,-sinθ,sinθ,cosθ)で 原点を通る傾き角θ/2(傾きがtanθ/2の意味なのですが 適切な呼び方がわからないので教えてもらえたら幸いです)の 直線に関する対称変換は(cosθ,sinθ,sinθ,-cosθ)です どちらの変換も対象のベクトルについて変換前と変換後で x^2+y^2が変化しません そこで不変式がx^2-y^2になるように考えてみました このとき必要になる条件はもとめる行列を(a,b,c,d)として a^2-c^2=1 b^2-d^2=1 ab-cd=0 となりますので結果として (secθ,±tanθ,tanθ,±secθ) (複号同順) とおくことにしてみました(この時点で事故ってたらすみません) このとき複号に負号をとると対称変換の類似のようになって あっさり幾何学的意味がわかります 問題は残りなんですが推測するに回転の類似ということで まずは固有値と固有ベクトルを求めてみました 予想に反して実数で答えが出て 固有値はsecθ±tanθ 対応する固有ベクトルは(1,±1) (複号同順) となりました 固有値同士をかけると1になり しかも固有ベクトルが一定で直行しており それから回転との類似で多分双曲線だと思うんですが (不変式がそもそもx^2-y^2ですし) θを変化させたときの変換の違いが幾何学的にうまく現れてくれません 調べたところ分解型複素数なるをみつけまして ヌル基底が固有ベクトル的になってるようなきがするのですが どこを調べても双曲線になるとsec,tanよりもcosh,sinhでおいているんです 双曲線関数は面積以外は角度に対応していないそうで あきらめたのですがsecやtanでおいたときはどうなのでしょうか ここまで行列ですっきりしたのに最後だけ微妙なのが気に入りません… 素敵な幾何学的があったら教えてください(ないというのでもいいです) 直接的な答えでなくても今後学習に役立ちそうなことがあればお願いします

  • 座標軸の回転と楕円の方程式

    原点Oを中心に回転した座標系で、元の座標系で楕円の方程式を表す方程式は、どう変わるかがわからないので質問します。 問題は、Oxy軸をOのまわりに120°回転して、Ox'y'軸が得られたとする。このときOxy系で楕円x^2/9+y^2/4=1を表す方程式は、Ox'y'系でどのような方程式になるか?です。 以下では、{}で行列を表し、(,,・・・)で一行分の要素を列挙し,左の()から1行、2行・・・とします。例えば、{(cos120°,-sin120°),(sin120°,cos120°)}の2行1列目の要素は、sin120°です。 自分は、{(x),(y)}={(cos120°,-sin120°),(sin120°,cos120°)}*{(x'),(y')}より、x=-1/2x'-√3/2y'とy=√3/2x'-1/2y'を得て、x^2/9+y^2/4=1に代入しました。そうして31x'^2-10√3x'y'+21y'^2=144を答えとしたのですが、 本の解答は、31x'^2-10√3x'y'-21y'^2=144でした。どなたか正しい答えを教えていただけませんかお願いします。

  • 回転行列

    z軸(0,0,1)に関する極座標 x=r*sinΘcosφ y=r*sinΘsinφ z=r*cosΘ を、中心はそのままで、立方体の最長の対角線が軸となるようにしたい時、 どのような回転行列をを用いればよいでしょうか? イメージとしては、 地球の地軸がずれている経度と緯度のような感じです。 立方体の対角線の軸は(1,1,1),(-1,1,1),(1,-1,1),(-1,-1,1)方向です。 よろしくお願いいたします。

  • 原点まわりの回転

    大学の線形代数で質問です。 楕円 x^2+y^2/4=1 を原点中心でπ/4回転させるとき、どのような式になるか。 Tによる線形写像とすると、T= [1/√2 -1/√2] [1/√2 1/√2] となるので、そこからどうすれば…というところです。。 そのまま代入や、cosやsinで書き換えも考えたんですが、ややこしくなるばかりで。。 お願いします!!

  • 回転移動した平面の方程式

    右手系座標での平面 z = 0 を 方位角 φ ( y 軸正方向から見て時計回りを正とする)、 仰角 θ ( x 軸正方向から見て反時計回りを正とする)で 回転させたときの方程式はどのようになりますか。 2つの方法で方程式が一致しないので、 混乱しています。 方位角 φ の座標変換 x' = x cos φ - z sin φ z' = x sin φ + z cos φ 仰角 θ の座標変換 y' = y cos θ + z sin θ z' = - y sin θ + z cos θ 方位角 φ, 仰角 θ の座標変換 (←この辺りから間違っている?) x' = x cos φ - z sin φ y' = x sin φ sin θ + y cos θ + z cos φ sin θ z' = x sin φ cos θ - y sin θ + z cos φ cos θ 方法1 回転後の平面は z' = 0 であるから、平面の方程式は x sin φ cos θ - y sin θ + z cos φ cos θ = 0 方法2 平面 z = 0 の単位法線ベクトル n は (0, 0, 1) である。 座標変換の式にこれを代入すると、回転後の n は ( - sin φ, cos φ sin θ, cos φ cos θ ) であるから、n に垂直で原点を通る平面の方程式は - x sin φ + y cos φ sin θ + z cos φ cos θ = 0 回転放物面 z = ( x^2 + y^2 ) / ( 4 f )についても 方程式を得たいので、よろしくお願い致します。

  • 行列 変換行列 行列の積

    変換行列に関して質問させて頂きます。 当方、行列に関する理解が乏しいので基礎を勉強し直しました。 前回、同次変換に関して質問させて頂きました。 URL:http://okwave.jp/qa/q6983574.html 新たに基礎的な部分を質問させて頂きます。 変換行列は回転行列を考えます。 右手系を採用してベクトルをx軸中心にθ回転した回転行列は、 (1   0     0   ) (0  cosθ  sinθ  ) (0  -sinθ  cosθ ) と表します。3行×3列の行列です。 よって、 変換後の列ベクトル(3×1)を (X) (Y) (Z) 変換前の列ベクトル(3×1)を (x) (y) (z) とすると、(3×1)=(3×3)×(3×1)なので (X)  (1   0     0   ) (x)   (Y)= (0  cosθ  sinθ  ) (y)  (Z)  (0  -sinθ  cosθ ) (z)  と表されると思います。 ここまでで間違いがありますでしょうか? ご指摘よろしくお願い致します。   合わせて並進を考える場合について教えて下さい。 例えば、x軸に3移動した場合を4行×4列の変換行列 で示す場合、どのように書けば良いのでしょうか? 添付画像の(A)と(B)どちらでしょうか? 合わせて理由も教えて頂けるとありがたいです。 回転行列を作った手順と同じくすると(A)の 表現で良いと考えているのですがどうでしょうか? 以上、ご回答何卒よろしくお願い致します。

  • 一次関数の回転移動について

    y=-3xを原点を中心に時計回りに90度回転させるとy=1/3xですよね。これは傾きをかけると-1になることを利用してすぐに解けるのですが、y=-3xを原点を中心に時計回りに45度回転させた直線の式は、どのように求めればいいのでしょうか? 教えて下さい!

  • 回転行列

    単位行列でないような3次回転行列Aには必ず回転軸があるのですか? つまり、dim{x∈R^3|Ax=x}=1となるのですか? 私の考えでは、3次回転行列Aはユニタリ行列で標準形 1  0   0 0 cosΘ sinΘ 0 -sinΘ cosΘ にできるということが、 線型変換A:R^3→R^3は長さと角度を保つような基底の変換でx軸を軸にするような変換にできる。 ということを表していると思ったので、dim{x∈R^3|Ax=x}=1なんじゃないのかなぁと思いました。 もし、dim{x∈R^3|Ax=x}=1になるのなら、その証明が知りたいです。 もしdim{x∈R^3|Ax=x}=1にならないのなら、反例となるようなAを教えて下さい。