回転行列の定義について

このQ&Aのポイント
  • 回転行列の定義について回転行列は、点P(x, y)を原点Oの周りに角θだけ回転させた点P'(x', y')を表す行列です。
  • 回転行列は、(cosθ -sinθ)と(sinθ cosθ)の2行2列の行列で表されます。
  • (x', y')=(x, y)(cosθ sinθ)(-sinθ cosθ)とも表すことができます。この形式の行列は回転行列とは呼ばれません。
回答を見る
  • ベストアンサー

回転行列の定義について

回転行列の定義について 点P(x,y)を原点Oの周りに角θだけ回転させた点をP'(x',y')とすると (x')=(cosθ -sinθ)(x) (y')  (sinθ  cosθ)(y) ※上下2段で1つの行列と見てください と表せ,この (cosθ -sinθ) (sinθ   cosθ) を回転行列と呼ぶ。これは理解できるのですが          (x' y')=(x y)( cosθ sinθ)          (-sinθ cosθ) と考えることもできますよね。この (  cosθ sinθ) (-sinθ cosθ) を回転行列と呼ぶことはできないのでしょうか。 むしろ座標は横に並べて書く方が慣れているので、できればこちらで考えたいのですが…。 もしできるのであれば、実用的(試験等)にこちらの考え方を使うことはできるのでしょうか。 また、できないのであれば前者は○で後者が×となる理由があるのでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

一次変換は、列ベクトルに行列を左から掛けるのが慣習ですからねぇ。 敢えて転置して書いて、しかも、そのことを断らないのであれば、 読む人が違和感を持つのは必至だし、場合によっては 文章の意味が通じないこともあるかも知れません。 列ベクトルで書いても問題はありませんが、そのように書いたことを ひとこと注記しておかないとマズイでしょう。 質問文にも書いてある通り、回転行列の成分が違ってしまいますからね。

drzssk
質問者

お礼

なるほど…慣習ということならそれに従った方が良いですね。 素直に列ベクトルの表記に慣れていこうと思います。 ご回答ありがとうございます!

関連するQ&A

  • なぜ回転行列が以下のようになるのでしょうか。

    3次元の座標系があります。軸はX,Y,Zです。 Cθ=cosθ Sθ=sinθ でなぜ画像のようになるのかが分かりません。 画像の左上がX軸に関してθだけ回転させた回転行列。 同様に、右はY軸に関して、左下はZ軸に関してθだけ回転させた回転行列です。 cosθ,sinθのつく場所はだいたい分かってきたのですが、符号がどうしてそうなるのかが分かりません。 各軸を原点から見て時計回りを正とするそうです。 よろしくお願いします。

  • オイラー角 回転行列

    オイラー角 回転行列 オイラー角と回転行列の関係が良く理解出来ないので 質問させて下さい。 工学や物理学で使われるオイラー角の回転順序は Z-X-Zが一般的だと認識しています。 ここで、3次元空間でのX軸、Y軸、Z軸周りの回転を 表す回転行列は、   1  0  0 Rx= 0 cosθ -sinθ 0 sinθ cosθ   cosθ 0 sinθ Ry= 0  1 0 -sinθ 0 cosθ    cosθ -sinθ 0 Rz= sinθ cosθ 0 0   0  1 です。 それぞれのθが、その軸での回転だと認識しています。 ここで、回転の方向はRxはY軸をZ軸に向ける方向、 RyはZ軸をX軸に向ける方向、RzはX軸をY軸に向ける方向。 Z-X-Zとは、 Rz・Rx・Rzの積という認識で良いでしょうか? 例えば、 Rx:Y軸をZ軸に向ける方向にπ/2 Ry:Z軸をX軸に向ける方向にπ/3 Rz:X軸をY軸に向ける方向にπ/4 回転させたとします。 Rz・Rx・Rzの積でなぜ、Ryの回転 が表現できるのですか? また、オイラー角はα,β,γと表記される事もありますが、 これは、X軸回転をα、Y軸回転をβ、Z軸回転をγで表して いるという事なのでしょうか? 分からない点だらけで申し訳御座いませんが、ご回答何卒よろしくお願い致します。

  • ベクトル 回転 なす角

    座標空間の原点をOとし、点Q(cosα、0、sinα)|α|<π/4が与えられている。長さ1のベクトルOPはz軸の正の方向と角π/4を保ちながら一定の速さで回転し、時間2πで1まわりしている。点Pが1回転する間に2つのベクトルOPとOQのなす角がπ/2より小さくなる時間の長さは4π/3である。このとき点Qの座標を求めよ。 この問題を解いているのですが、Pの座標を(cosβ、sinβ、1/√2)とおけるでしょうか? 「2つのベクトルOPとOQのなす角がπ/2より小さくなる時間の長さは4π/3である」 というのはcosθ=ベクトルOP・OQで、β=4π/3のときにcosθ<0 ということなのでしょうか? このようにやってみても、Qの座標が出てこなくて困っています。 回答いただければありがたいです。 よろしくお願いします

  • 回転移動した平面の方程式

    右手系座標での平面 z = 0 を 方位角 φ ( y 軸正方向から見て時計回りを正とする)、 仰角 θ ( x 軸正方向から見て反時計回りを正とする)で 回転させたときの方程式はどのようになりますか。 2つの方法で方程式が一致しないので、 混乱しています。 方位角 φ の座標変換 x' = x cos φ - z sin φ z' = x sin φ + z cos φ 仰角 θ の座標変換 y' = y cos θ + z sin θ z' = - y sin θ + z cos θ 方位角 φ, 仰角 θ の座標変換 (←この辺りから間違っている?) x' = x cos φ - z sin φ y' = x sin φ sin θ + y cos θ + z cos φ sin θ z' = x sin φ cos θ - y sin θ + z cos φ cos θ 方法1 回転後の平面は z' = 0 であるから、平面の方程式は x sin φ cos θ - y sin θ + z cos φ cos θ = 0 方法2 平面 z = 0 の単位法線ベクトル n は (0, 0, 1) である。 座標変換の式にこれを代入すると、回転後の n は ( - sin φ, cos φ sin θ, cos φ cos θ ) であるから、n に垂直で原点を通る平面の方程式は - x sin φ + y cos φ sin θ + z cos φ cos θ = 0 回転放物面 z = ( x^2 + y^2 ) / ( 4 f )についても 方程式を得たいので、よろしくお願い致します。

  • 行列 1次変換

    次の平面上の変換は1次変換か否かを調べ、1次変換であるもの については、1次変換を表す行列を求めよ。 (1)平面上の任意の点Pに点Pを対応させる変換(恒等変換) (2)点P(x、y)をx軸方向に2、y軸方向に-1だけ平行移動した点を P’(x’、y’)とする変換 (3)点P(x、y)を原点を中心に角π/3だけ回転させた点をP’(x’、y’) とする変換 この三つの問題なんですが (1)は恒等変換なので (x’)=(1 0)(x)=(x) (y’)=(0 1)(y)=(y)  (2段で書いていますが1段と考えて) でよいですか? あとの二つはわかりません。お願いします。

  • 回転行列

    z軸(0,0,1)に関する極座標 x=r*sinΘcosφ y=r*sinΘsinφ z=r*cosΘ を、中心はそのままで、立方体の最長の対角線が軸となるようにしたい時、 どのような回転行列をを用いればよいでしょうか? イメージとしては、 地球の地軸がずれている経度と緯度のような感じです。 立方体の対角線の軸は(1,1,1),(-1,1,1),(1,-1,1),(-1,-1,1)方向です。 よろしくお願いいたします。

  • 3次元の回転角度の求め方について教えてください。

    3次元の回転角度の求め方について教えてください。 3軸の加速度センサーがあります。 まず加速度センサーのZ軸を重力方向に置いたときの加速度センサーの値を(x1,y1,z1)=(0,0,1)とします。 加速度センサーのx軸、y軸、z軸をそれぞれ回転させたあとの加速度センサーの値を(x2,y2,z2)とします (このとき加速度センサーは静止しているので、センサーの値は重力の分力になります)。 (x2,y2,z2)が既知のとき(x1,y1,z1)に戻すためのそれぞれの回転角はどのように求めれば良いのか教えてください。 (x2,y2,z2)→(x1,y1,z1)へ移動するときの回転角を φ(z軸の回転角)、ψ(x軸の回転角)、θ(y軸の回転角) とします。 回転行列 (x1) = (cosφ -sinφ 0) (cosθ 0 sinθ) (1 0 0 ) (x2) (y1) = (sinφ cosφ 0) (0 1 0 ) (0 cosψ -sinψ) (y2) (z1) = (0 0 1) (-sinθ 0 cosθ) (0 sinψ cosψ ) (z2) より,3行3列の行列を計算すると 0=cosφcosθx2 + (-sinφcosψ+cosφsinθsinψ)y2+(sinφsinψ+cosφsinθcosψ)z2 0=sinφcosθx2 + (cosφcosψ+sinφsinθsinψ)y2+(-cosφsinψ+sinφsinθcosψ)z2 1=-sinθx2 + cosθsinψy2 + cosθcosψz2 となると思うのですが、この式からφ、ψ、θが導きだせません。 どうすれば求めることができるか教えていただけますか。

  • 回転した座標系を基準とし、再回転したときの回転行列について

    x軸、y軸、z軸が互いに直角に交わる座標系を考えます。(これを座標系Aとします) 座標系Aを、原点を中心とし、各軸ごとにθxa,θya,θzaだけ回転させた座標系を座標系Bとします。 さらに、座標系Bを基準とし、各軸ごとにθxb,θyb,θzbだけ回転させた座標系を座標系Cとします。 このとき、座標系Aから見た座標系Cの回転角は、どのように計算すればよろしいでしょうか? 座標系Aを基準とした回転角で座標系Bを計算し、さらに座標系Aを基準とした回転角で座標系Cを計算し……という問題であれば、単純に回転行列を掛けていけばいいと思うのですが、 「1つ前の座標を基準とした回転角を与えられたとき、全体でどれだけ回転したか?」 を表現する方法がわからなかったので、ご教示いただければ幸いです。 何卒よろしくお願いいたします。

  • 3次元空間の回転行列

    3次元空間上の点A(X,Y,Z)と点B(X',Y',Z')があるとします。ただし、点Bは、点Aを原点Oを中心とする3次元空間の回転をさせることによって得られる点とします。 このAをBへと回転させる行列を、特に以下のように考えて得られる回転行列として導出する方法を教えてください。 O,A,Bによって作られる平面に直交し、原点を通る軸を回転軸として、それを軸にAを∠AOB回転させる。 一応自分なりに考えたこの回転行列を求める方法としては、まず ベクトルOA、OBに対してシュミットの直交化を用いて新たな正規直交基底、Vx、Vy、Vzを求めます。ただし、はじめのVxの導出にはOAを用い、VzはVxとVyの外積を計算しました。 次にP=(Vx,Vy,Vz)として座標変換の行列Pを作ります。 そして、求める行列Wを W = PMz(P^-1) (Mzはz軸まわりに∠AOB回転させる行列、P^-1はPの逆行列) として導出しました。 このようにして解く方法を考えたのですが、これは正しいのでしょうか? また、これ以外にもっとスマートに解く方法があれば教えてください。 よろしくお願いします。

  • 座標軸の回転と楕円の方程式

    原点Oを中心に回転した座標系で、元の座標系で楕円の方程式を表す方程式は、どう変わるかがわからないので質問します。 問題は、Oxy軸をOのまわりに120°回転して、Ox'y'軸が得られたとする。このときOxy系で楕円x^2/9+y^2/4=1を表す方程式は、Ox'y'系でどのような方程式になるか?です。 以下では、{}で行列を表し、(,,・・・)で一行分の要素を列挙し,左の()から1行、2行・・・とします。例えば、{(cos120°,-sin120°),(sin120°,cos120°)}の2行1列目の要素は、sin120°です。 自分は、{(x),(y)}={(cos120°,-sin120°),(sin120°,cos120°)}*{(x'),(y')}より、x=-1/2x'-√3/2y'とy=√3/2x'-1/2y'を得て、x^2/9+y^2/4=1に代入しました。そうして31x'^2-10√3x'y'+21y'^2=144を答えとしたのですが、 本の解答は、31x'^2-10√3x'y'-21y'^2=144でした。どなたか正しい答えを教えていただけませんかお願いします。