• 締切済み

立方体に含まれる球の体積 (再)

立方体に内接する球を考えます。 このとき立方体と球の中心を原点とします。 球の中心が立方体の中心から (x, y, z) = (a, b, c)移動したとき、 立方体に含まれる球の体積 V (a, b, c)は どのような関数になるのでしょうか? 可能であれば、積分を用いた解き方のヒントもお願い致します。 これまでに以下のことが分かりました。 http://ebw.eng-book.com/heishin/vfs/calculation/ThreeDimensionVSFG/​ にある「球欠」(球分から円錐を差し引いた立体)の体積は V' = π ( 3 r - h ) h^2 / 3 という公式から求められます。 これは立方体に内接する球が x, y, z 軸の いずれかの方向に h だけ移動したときに はみ出る体積と一致します。 しかしこれを単純に利用しては解けません。 http://okwave.jp/qa3777495.htmlにある Quattro99様の検算を考慮すると、 求めたい関数 V ( a, b, c ) は V ( 0, 0, 0 ) = 4 π r^3 / 3 V ( r, 0, r ) = V ( 0, r, 0 ) = V ( 0, 0, r ) = 2 π r^3 / 3 V ( r, r, 0 ) = V ( r, 0, r ) = V ( 0, r, r ) = π r^3 / 3 V ( r, r, r ) = π r^3 / 6 となります。 なお、質問 http://okwave.jp/qa3777495.html は、誠に勝手ながら締め切りました。 自分自身が書いた文章に誤りが多く ご回答頂く方に混乱を招く恐れがあると判断したためです。 ご迷惑をおかけ致しますが、よろしくお願い致します。

みんなの回答

  • neKo_deux
  • ベストアンサー率44% (5541/12319)
回答No.1

問題を1段階簡単化し、2次元の正方形と円の場合で考察してみては? 結果、場合分けが出てくる、絶対値が出てくるとかなら、3次元でも同じような式になるかも知れませんし。 いくつか解法を検討すれば、考え方のヒントがあるかも知れません。 -- 自分だったら面倒だから、PC使ってモンテカルロ法とかでグラフ描いて区間ごとに近似するとか…。

関連するQ&A

  • 立方体に含まれる球の体積

    立方体に内接する球を考えます。 このとき立方体と球の中心を原点とします。 球の中心が立方体の中心から (x, y, z) = (a, b, c)移動したとき、 立方体に含まれる球の体積 V はいくらになるのでしょうか? 具体的な積分の方法が分からず、 http://ebw.eng-book.com/heishin/vfs/calculation/ThreeDimensionVSFG/ にある「球分」の体積の公式から V = 4πr^3 / 3 - 2πr^2 (a + b + c) / 3 となると考えたのですが、全くの誤りでしょうか?

  • 球に内接する立方体の体積

    (問)半径1の球に内接する立方体の体積を次の中から1つ選べ  8/√6  4π/3√3  8/3√2  8/π√2  8/3√3 (私の考え)最初は、正立方体の場合を考え、球を輪切りにして、その円に内接する正方形の1辺が√2と求まるので、体積は...と考えたら、答えの選択肢がありません(^^;)。 問題解説には1辺が2/√3とあったのですが、どうも理解できません。宜しくお願いいたします。

  • 球の体積と表面積。答えが間違ってると思うのです・・

    問。 立方体Aに内接する球Kと外接する球Lがある。 (3)KとLの体積の比を求めよ。 答え。 1:3√3 (1)がAとKの表面積の比、(2)はAとKの体積の比です。 この(3)だけ答えを間違えました。 私の回答は、1:2√2です。 解き方としては、Kの半径をx、球K、Lの中心をOとします。 Oから立方体Aの頂点に引いた直線は球Lの半径になり、 またその直線は、立方体Aに内接する球Kの半径から√2xと分かります。 (直線と内接円の半径から、45°、45°、90°の二等辺三角形が出来るため。) 従って球Lの半径は√2xです。 球の体積の公式から、V=(4/3)πr^3なので、 それぞれ、(4/3π)x^3、(8√2/3)πx^3となりました。 なので体積比は、1:2√2となったのです。 この問題集には詳しい解説が載っておらず、回答と解法の一部が載ってるだけです。 その解法の一部ですが、 「立方体Aの1辺の長さをaとすると、球K、球Lの半径はそれぞれ、a/2、√3a/2」 とありました。 どうして回答を間違えたのか、分かりません。 また、解説の球Lの半径が√3a/2となるのも分からないのです。 この二等辺三角形から、1:1:√2が成り立ち、立方体の1辺をaとするなら、 球Lの半径は√2a/2になると思います。 お手数ですが、ご意見。・ご回答お願いします。

  • 変形立方体の体積

    辺の長さが1の変形立方体の体積を求めてみようと試みたところ、 どうやら3次方程式が不可避のようで、解いてみても立方根を外すことは無理かな、と思いました。 隣り合う正三角形の頂点間の距離を√2xとすると、 3次方程式2x^3-2x-1=0の解となり、 x=((54+6√33)^(1/3)+(54-6√33)^(1/3))/6≒1.191487884 体積は V=√(162x^2+210x+80)/3≒7.8894774 因みに外接球の半径は R=√(2x^2+2x+2)/2≒1.343713374 正多面体や(変形立方体と変形十二面体を除く)準正多面体はすっきりした値になるので、この値が正しいのかどうか、少し自信が持てません。 何か参考になるようなURL、若しくは書籍等あれば、教えていただけるとありがたいです。 よろしくお願いいたします。

  • 半径1の球に内接する立方体の一辺の長さ

    いつもありがとうございます。 タイトルのように、半径1の球に内接する立方体の一辺の長さを問う問題について質問させてもらいます。内接する立方体の頂点のうち、最も遠いものどうしを結ぶ対角線と、立方体の一辺、およびそれを√2倍した斜辺からなる、直角三角形での三平方の定理で、すぐに解けるようです。そして答えは2/√3となります。ここで、最初の「最も遠いものどうしを結ぶ対角線」は、球の中心を通る(ゆえに長さ2)直線である必要があります。これは当然のようにも思いますが、改めて考えると、自明とも思えないような気がしてきました。最も遠いものどうしを結ぶ対角線は球の中心を通る直線であることを直感的に理解する方法はありますでしょうか。あるいはそれなりの証明が必要でしょうか。検討違いな質問でしたらすいませんが、どなたかご助言下さい。

  • 球欠を球の中心を通る平面で分割した図形の体積

    次についてお教えいただけるかた、お手数ですがよろしくお願いします。 原点を中心にした球を元に球欠(球の一部分を平面で切り取った図形)を作ります。 (図の例では中心からの高さhの平面で切り取った上の図形) その図形を更に球の中心を通る平面で切り取ったときにできる図形の体積を求めることはできるでしょうか。 元の球の半径r、球欠底面と球の中心との距離h、球欠底面の半径a、最後に切り取ったときに球欠の底面にできる弦の長さcはわかっているものとします。

  • 球の重なり合い (排除体積)

    直径aの剛体球を考えます。 画像のようにこの剛体球が2つあるときの排除領域の重なった部分の体積v(r)を求めたいのですが(ただしrは球の分子間距離)、教科書の答えπ(2a-r)^2(2a+r)/6とはならずπ(16a^3-12a^2r+r^3)/12と出ました。教科書が間違えてるのか、合っているのならどう計算すればよいのか教えたください、お願いします。

  • 球の体積について

    球の体積ついて 中一男子です。 数学で球の体積の求めかたをやりました。 今から、書きます。 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 球が丁度入る円柱の容器と、その球を半分にした半球の容器があります。 円柱の容器には半球の何倍分の水が入るでしょうか? 上のことを調べてみると、円柱の容器の水の量は半球の容器の3倍分であることが分かる。 すなわち、半球の体積は円柱の「三分の一」である。 このことから、球の体積について、次のことが分かる。 球の体積は、その球が丁度はいる円柱の体積の「三分の二」である。 半径「rcm」の球が丁度入る円柱は、底辺の半径が「rcm」で高さが「2rcm」であるから、 その体積は「πr(2条)×2rcm」となる。 πr(2条)×2r=π×r×r×2×r=「2πr(3条)」 と、計算できるから、半径「rcm」の球の体積「V立方cm」は、次のように表される。 V=「2πr(3条)」×「三分の二」=「三分の四πr(3条)」 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ はい、終わりました。 そして、授業で先生がこのことを説明したあと、こんなことを言いました。 「最初の、 (球が丁度入る円柱の容器と、その球を半分にした半球の容器があります。 円柱の容器には半球の何倍分の水が入るでしょうか?) の部分は、実験じゃないですか。でも、この説明は計算でもできるんですよ。 まあ、難しいので説明しないけど。皆さん、もう少し、勉強してから調べてみてください」 と、なんとなく期待しているような気がしました。 そこで、僕は知りたいです。計算だけの方法を。 中一の脳なので、理解できないところもあるかもしれません。 しかし、それも頑張って理解したいです。 どれだけ難しくてもいいです。複雑でもいいです。 文が下手なので、質問があるかたは書いてください。 御回答お願いします。

  • 排除体積の概念を教えてください

    http://okwave.jp/qa/q612647.html ここのページに解説が書かれてあるように 直径aの剛体球の排除体積 μは μ = 2π/3 a^3 ~ 2.09 a^3 で表されます。 もし、100個の剛体球が最密充填格子を作ったとすると、全体の体積は V = 209 a^3 になります。 一方で、一辺が長さaの立方体形状をした剛体100個が最密充填格子を作ったとすると、、全体の体積は V = 100 a^3 になります。 つまり、直径aの球を100個集めた方が、一辺の長さがaの立方体を集めるよりも およそ2倍体積が大きいということになってしまい、矛盾が生じてしまうのですが これはなぜでしょうか? http://ja.wikipedia.org/wiki/%E7%A9%BA%E9%96%93%E5%85%85%E5%A1%AB%E7%8E%87 また、最密充填格子の充填率は74%なので、 4π/3 a^3 = 0.74 * 2.09 a^3 にならなければならはずなのに、こうはならないのはなぜでしょうか?

  • 微分、球と円錐の体積の最小値の問題

    問:頂点がz軸上にあり、底面がxy平面上の原点を中心とする円である直円錐がある。この円錐の側面が原点を中心とする半径1の球に接しているとき、この円錐の体積の最小値を求めよ。 答:(√3)π/2 問題集の解説: 円錐の底面の半径をr,高さをhとおくと、側面が半径1の球と接するから、{√(r*r-h*h)}=rh ・・・(1) より    r*r=(h*h)/(h*h-1) (1<h) 体積をVとおくと  V=(π*r*r*h)/3=(π*h*h*h)/3(h*h-1) であるから (π/3)*(1/V)=(1/h)-(1/h*h*h) f(x)=x-x*x*x (0<x<1)・・・(2)の増減を調べると、 f(x)は0<x<1で正の値をとり、x=1/√3 のとき最大値(2√3)/9をとるからVは、h=√3のとき最小値をとる。 質問: 1.何故、(1)が成り立つのでしょうか? 2.(2)が何を表しているのかがよくわかりません。(2)以降よくわからないので、解説お願いします。