- 締切済み
立方体に含まれる球の体積 (再)
立方体に内接する球を考えます。 このとき立方体と球の中心を原点とします。 球の中心が立方体の中心から (x, y, z) = (a, b, c)移動したとき、 立方体に含まれる球の体積 V (a, b, c)は どのような関数になるのでしょうか? 可能であれば、積分を用いた解き方のヒントもお願い致します。 これまでに以下のことが分かりました。 http://ebw.eng-book.com/heishin/vfs/calculation/ThreeDimensionVSFG/ にある「球欠」(球分から円錐を差し引いた立体)の体積は V' = π ( 3 r - h ) h^2 / 3 という公式から求められます。 これは立方体に内接する球が x, y, z 軸の いずれかの方向に h だけ移動したときに はみ出る体積と一致します。 しかしこれを単純に利用しては解けません。 http://okwave.jp/qa3777495.htmlにある Quattro99様の検算を考慮すると、 求めたい関数 V ( a, b, c ) は V ( 0, 0, 0 ) = 4 π r^3 / 3 V ( r, 0, r ) = V ( 0, r, 0 ) = V ( 0, 0, r ) = 2 π r^3 / 3 V ( r, r, 0 ) = V ( r, 0, r ) = V ( 0, r, r ) = π r^3 / 3 V ( r, r, r ) = π r^3 / 6 となります。 なお、質問 http://okwave.jp/qa3777495.html は、誠に勝手ながら締め切りました。 自分自身が書いた文章に誤りが多く ご回答頂く方に混乱を招く恐れがあると判断したためです。 ご迷惑をおかけ致しますが、よろしくお願い致します。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- neKo_deux
- ベストアンサー率44% (5541/12319)
問題を1段階簡単化し、2次元の正方形と円の場合で考察してみては? 結果、場合分けが出てくる、絶対値が出てくるとかなら、3次元でも同じような式になるかも知れませんし。 いくつか解法を検討すれば、考え方のヒントがあるかも知れません。 -- 自分だったら面倒だから、PC使ってモンテカルロ法とかでグラフ描いて区間ごとに近似するとか…。