• 締切済み

球の重なり合い (排除体積)

直径aの剛体球を考えます。 画像のようにこの剛体球が2つあるときの排除領域の重なった部分の体積v(r)を求めたいのですが(ただしrは球の分子間距離)、教科書の答えπ(2a-r)^2(2a+r)/6とはならずπ(16a^3-12a^2r+r^3)/12と出ました。教科書が間違えてるのか、合っているのならどう計算すればよいのか教えたください、お願いします。

みんなの回答

回答No.1

球体の直径がa(つまり半径がa/2)で、重なっている部分の厚さがrと解釈します。 (どこがaでどこがrなのかによって答が異なってきます) 円 x^2 + y^2 = (1/4)a^2 をx軸の周りに一回転させてえられる球体の、「(a - r)/2 ≦ x ≦ a/2」の部分の体積の2倍となるので 2 ∫((a - r)/2→a/2) π ( (1/4)a^2 - x^2) dx = 2π [ (1/4) a^2 x - (1/3) x^3 ]((a - r)/2→a/2) = 2π { (1/8) a^3 - (1/24) a^3 } - 2π { (1/4) a^2 ( (a - r)/2 ) - (1/3) ( (a - r)/2 )^3 } = 2π * (1/12) a^3 - 2π * (1/12) * ( (a - r)/2 ) { 3a^2 - 4 ( (a - r) /2)^2 } = (1/6) π a^3 - (1/12) π (a - r) { 3a^2 - (a^2 - 2ar + r^2) } = (1/6) π a^3 - (1/12) π (a - r) (2a^2 + 2ar - r^2 ) = (1/6) π a^3 - (1/12) π (2a^3 - 3ar^2 + r^3) = (1/12) π (3ar^2 - r^3) = (1/12) π r^2 (3a - r) ーー これが「重なった部分の体積」で、 念のため「重なっていない部分の体積」は 2 * (4/3) π (a/2)^3 - (1/12) π (3ar^2 - r^3) = (1/3) π a^3 - (1/12) π (3ar^2 - r^3) = (1/12) π { 4a^3 - (3ar^2 - r^3) } = (1/12) π (4a^3 - 3ar^2 + r^3) = (1/4) π (a + r) (4a^2 - 4ar + r^2) = (1/4) π (a + r) (2a - r)^2

関連するQ&A

  • 排除体積の概念を教えてください

    http://okwave.jp/qa/q612647.html ここのページに解説が書かれてあるように 直径aの剛体球の排除体積 μは μ = 2π/3 a^3 ~ 2.09 a^3 で表されます。 もし、100個の剛体球が最密充填格子を作ったとすると、全体の体積は V = 209 a^3 になります。 一方で、一辺が長さaの立方体形状をした剛体100個が最密充填格子を作ったとすると、、全体の体積は V = 100 a^3 になります。 つまり、直径aの球を100個集めた方が、一辺の長さがaの立方体を集めるよりも およそ2倍体積が大きいということになってしまい、矛盾が生じてしまうのですが これはなぜでしょうか? http://ja.wikipedia.org/wiki/%E7%A9%BA%E9%96%93%E5%85%85%E5%A1%AB%E7%8E%87 また、最密充填格子の充填率は74%なので、 4π/3 a^3 = 0.74 * 2.09 a^3 にならなければならはずなのに、こうはならないのはなぜでしょうか?

  • 剛体球分子の排除体積について。

    体積ωの剛体急分子の排除体積μを求めよという問題があるのですが、1分子の体積ω=4πa^3/3 (分子の半径はa)とあらわすことができ、答えである1分子の排除体積がμ=4ωであることは分かったのですが、途中の経過がよく分かりません。 (途中によく分からない体積4π(2a)^3/3というのがありました。これは何の体積なんでしょう?) どなたか教えていただけないでしょうか? 分かりにくいかもしれませんがよろしくお願いします。

  • 物理化学

    前回質問させていただいたのですが、質問の仕方がわるかったようなので、もう一度質問させていただきます。 van der waalsの式の説明の中で、気体の排除体積についてわからないので、教えてください。以下教科書の引用、 「二個の分子が互いに入り込めない半径r(van der waals半径)の剛体球を考える。一方を固定させ、他の分子は自由に運動してどこからでも接近できるとすると、二個の分子の中心(原子の代表点と考える)は距離2r以内に接近することができないから、その接近できない体積(排除体積)は2rの球に等しく、その体積は8×4/3πr^3となり八個分の球に等しい。従って、その半分は1分子あたりの排除体積に相当する。これはその分子の体積4/3πr^3の四倍に等しい。」 私にはどうしてもこの文章の意味が理解できないのです。「二個の分子とは、二原子分子のことをさしているのか、端に分子っていうかたまりが二個あるだけなのか。」「一個の分子を球って考えたら、その球の体積分だけが排除体積にあたると思うのですが。」ということが特にわからないので教えてください。お願いします。

  • 球の体積について

    球の体積ついて 中一男子です。 数学で球の体積の求めかたをやりました。 今から、書きます。 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 球が丁度入る円柱の容器と、その球を半分にした半球の容器があります。 円柱の容器には半球の何倍分の水が入るでしょうか? 上のことを調べてみると、円柱の容器の水の量は半球の容器の3倍分であることが分かる。 すなわち、半球の体積は円柱の「三分の一」である。 このことから、球の体積について、次のことが分かる。 球の体積は、その球が丁度はいる円柱の体積の「三分の二」である。 半径「rcm」の球が丁度入る円柱は、底辺の半径が「rcm」で高さが「2rcm」であるから、 その体積は「πr(2条)×2rcm」となる。 πr(2条)×2r=π×r×r×2×r=「2πr(3条)」 と、計算できるから、半径「rcm」の球の体積「V立方cm」は、次のように表される。 V=「2πr(3条)」×「三分の二」=「三分の四πr(3条)」 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ はい、終わりました。 そして、授業で先生がこのことを説明したあと、こんなことを言いました。 「最初の、 (球が丁度入る円柱の容器と、その球を半分にした半球の容器があります。 円柱の容器には半球の何倍分の水が入るでしょうか?) の部分は、実験じゃないですか。でも、この説明は計算でもできるんですよ。 まあ、難しいので説明しないけど。皆さん、もう少し、勉強してから調べてみてください」 と、なんとなく期待しているような気がしました。 そこで、僕は知りたいです。計算だけの方法を。 中一の脳なので、理解できないところもあるかもしれません。 しかし、それも頑張って理解したいです。 どれだけ難しくてもいいです。複雑でもいいです。 文が下手なので、質問があるかたは書いてください。 御回答お願いします。

  • 立方体に含まれる球の体積 (再)

    立方体に内接する球を考えます。 このとき立方体と球の中心を原点とします。 球の中心が立方体の中心から (x, y, z) = (a, b, c)移動したとき、 立方体に含まれる球の体積 V (a, b, c)は どのような関数になるのでしょうか? 可能であれば、積分を用いた解き方のヒントもお願い致します。 これまでに以下のことが分かりました。 http://ebw.eng-book.com/heishin/vfs/calculation/ThreeDimensionVSFG/​ にある「球欠」(球分から円錐を差し引いた立体)の体積は V' = π ( 3 r - h ) h^2 / 3 という公式から求められます。 これは立方体に内接する球が x, y, z 軸の いずれかの方向に h だけ移動したときに はみ出る体積と一致します。 しかしこれを単純に利用しては解けません。 http://okwave.jp/qa3777495.htmlにある Quattro99様の検算を考慮すると、 求めたい関数 V ( a, b, c ) は V ( 0, 0, 0 ) = 4 π r^3 / 3 V ( r, 0, r ) = V ( 0, r, 0 ) = V ( 0, 0, r ) = 2 π r^3 / 3 V ( r, r, 0 ) = V ( r, 0, r ) = V ( 0, r, r ) = π r^3 / 3 V ( r, r, r ) = π r^3 / 6 となります。 なお、質問 http://okwave.jp/qa3777495.html は、誠に勝手ながら締め切りました。 自分自身が書いた文章に誤りが多く ご回答頂く方に混乱を招く恐れがあると判断したためです。 ご迷惑をおかけ致しますが、よろしくお願い致します。

  • 立方体に含まれる球の体積

    立方体に内接する球を考えます。 このとき立方体と球の中心を原点とします。 球の中心が立方体の中心から (x, y, z) = (a, b, c)移動したとき、 立方体に含まれる球の体積 V はいくらになるのでしょうか? 具体的な積分の方法が分からず、 http://ebw.eng-book.com/heishin/vfs/calculation/ThreeDimensionVSFG/ にある「球分」の体積の公式から V = 4πr^3 / 3 - 2πr^2 (a + b + c) / 3 となると考えたのですが、全くの誤りでしょうか?

  • 球の表面積から体積を求める

    表面積が20.0cm^2の球の体積を求めたいんです。 S=4πr^2とV=4/3πr^3 の公式は知ってるのですが、最初のr^2のせいで半径をどう出したらいいかわかりません。 答えはr=1.26cmとなっています。

  • 円錐と球の体積

    球Aは底面の半径が6、母線の長さが10の円錐の容器にぴったりとおさまる。 (1)球Aの体積を求めよ。 (2)この円錐の容器に水を満たしてから、球を静かに入れたとき容器内に残っている水の体積を求めよ。 高校一年生なのですが、全く分かりません。 よろしくお願いします。

  • 球 表面積 体積 関係

    こんにちは。 現在、IAIIBの範囲を復習していて気がついたことがあります。 球の体積V=4/3πr^3 球の表面積S=4πr^2 ですが、これは球の体積を微分したら球の表面積になりますよね。 数学に苦手意識をもっており、今もあまり好きな教科ではないのですが、相互関係などを理解していけば好きになっていけるかなと考えています。 物理も微分積分を使用したら楽しいなどとも聞きますので。 この球の体積と表面積の関係を式と理屈を合わせて教えていただけると幸いです。 よろしくお願いします。

  • 球を分割したときの体積比

    単位球 x^2+y^2+z^2=1 を平面x=1/3で分割したときの体積比を出す問題です この球の全体の体積は ∫[-1 -> 1](1-x^2)dx で出ることを利用して V1=∫[-1 -> 1/3](1-x^2)dx V2=∫[1/3 -> 1](1-x^2)dx と分割して計算しました。 しかしzを使っていないので、出題者の意図した解法ではない気がします。 出題者の考えていたクールな解き方をわかる方はいませんでしょうか。