• 締切済み

関数論

aはP'上の点でf(z)のシンセイ特異点でないとするとき (1)aがf(z)のN位の零点⇔Resf'(z)/f(z)dz=N              z=a (2)aがf(z)のN位の極⇔Resf'(z)/f(z)dz=-N             z=a であることを示すやり方が解りません。 教えて下さい。               

みんなの回答

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

(1) a が f(z) の n 位の零点とすると z=a のある近傍 U={z||z-a|<r}(r>0) で f(z)=(z-a)^nf_n(z) とかける。 f_n(z) は U で正則で f_n(a)≠0 である f'(z)=n(z-a)^{n-1}f_n(z)+(z-a)^nf'_n(z) だから f'(z)/f(z)=n/(z-a)+f'_n(z)/f_n(z) f_n(z) は z=a で零点も極も持たないから, 留数Res_a(f'(z)/f(z))=Res_a(n/(z-a))=n a が f(z) の n=N 位の零点とすると 留数Res_a(f'(z)/f(z))=n=N となる 留数Res_a(f'(z)/f(z))=N とすると n=Nとなり a は f(z) の N 位の零点となる (2) a が f(z) の m 位の極とすると 1/f(z)=(z-a)^mg(z) (g(a)≠0) f'(z)=(-mg(z)-(z-a)g'(z))/((z-a)^{m+1}{g(z)}^2) f'(z)/f(z)=-m/(z-a)-g'(z)/g(z) となるから 留数Res_a(f'(z)/f(z))=Res_a(-m/(z-a))=-m a が f(z) の n=N 位の極とすると 留数Res_a(f'(z)/f(z))=-n=-N となる 留数Res_a(f'(z)/f(z))=-N とすると -m=-Nとなり a は f(z) の N 位の極となる

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 複素関数論

    複素関数の各特異点における留数を求める問題なのですが、 ・z/sinz を求めたいのですが、 極になる可能性はsin=0,すなわりz=nπ しかし、 ord(z,0)=ord(sin,0)=1なので ←これ以降どうゆう意味なのですか? z/sinzはz=0で正則 z/sinzはz=nπ,n≠0を1位の極に持ち、 Res(z/sinz,nπ)=(-1)^nπ ご回答お願いします。

  • 特異点の種類について

    ∫1/(Z+3)(Z+1)dzこれらの特異点の種類を示せということなのですが、これらの特異点Z=-1,-3はK位の極になるのでしょうか?もしくは真性特異点になるのでしょうか?どなかたご指導をお願いします。

  • ∫(c,(z+1)/z(z-i)^2)dzの値を求めよ。

    識者の皆様宜しくお願い致します。 下記の問題を解いているのですが自信がいまひとつです。 このようなとき方でいいでしょうか? [問]Cが円|z-i=1/2で反時計回りの向きとする時、∫(c,(z+1)/z(z-i)^2)dzの値を求めよ。 [解] f(z)=z^(-1)(z+1)(z-i)^(-2)において、単純閉曲線|z-i|=1/2の内部ではz=iのみで特異点(つまり、孤立特異点)を持ち、iが2位の極となる。 (∵『f(z)={Σ(k=1..n,(z-ak)^sk}/{Σ(k=1..m,(z-bk)^tk} (但し、a1,a2,…,anは複素数。b1,b2,…,bmは相異なる複素数。s1,s2,…,sn,t1,t2,…,mkは自然数)とする時、bk(k=1,2,…,m)は孤立特異点となり、bkをtk位の極という』) よって ∫(c,(z+1)/z(z-i)^2)dz=2πiRes(i,f) (∵『「留数定理」f(z)は単純閉曲線Cの内部に孤立特異点z1,z2,…,znを持つ他はCの内部と周を込めて正則とする。この時、∫(c,f(z)dz=2πiΣ(j=i..n,Res(zj,f))』) =2πi・lim(z→i,d/dz{(z-i)^2(z+1)/(z(z-i)^2)}) (∵z0がk位の極の時、Res(z0,f)=1/(k-1)!lim(z→z0,d^(k-1)/dz^(k-1)((z-z0)^k)f(z)) =2πi・lim(z→i,d/dz{(z+1)/z}) =2πi・lim(z→i,-1/z^2) =2πi・1 =2πi

  • 複素関数の問題です。

    f(z) = cos(2z) - sin(z) Cを原点を中心とする半径1の半時計周りの演習とし、nを自然数とする。このときの積分値を求めよ。 ∫[C] f(z) / z^n dz +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ という問題です。 g(z) = f(z) / z^n としてz = 0が一位の極なので留数定理より Res = lim[z→0]{(z-0)g(z)} = lim[z→0]{f(z)/z^(n-1)} より Res = f(0) = 1 として極は半径1の円周のなかにz = 0のみなので ∫[C] f(z)/z^n dz = 2πi としました。 これで合っているのでしょうか? よろしくお願いします。

  • 複素関数の積分

    正の実数rに対して、Crを複素平面上の中心0、半径rの円とする。ただし、曲線の向きは偏角の正の向きとする。また、a、bを0でない実数とし、複素関数fをf(z)=z/((z-a)(z-b))と定義する。 このとき、∫_(Cr) f(z)dzを求めよ。ただし、Crが特異点上を通るときは考えないこととする。 教えてください。

  • 留数の計算

    問: f(z)=1/(z-1)(z+3)^2 の孤立特異点における留数を求めよ。 僕の答え:      孤立特異点は、1と-3       z=1は、1位の極、z=-3は、2位の極      よって、公式より、      Res[z=1]f(z)=Lim z→1 (z-1)f(z)=1/(1+3)^2 = 1/16      Res[z=-3]f(z)=Lim z→ー-3 1/(2-1)! d/dz{(z+3)^2f(z)}        =-1/(z-1)^2=-1/(-3-1)^2 = -1/16 で、足したら0になる!! これは、積分の留数定理から言っておかしいと思います。 恐縮ですが、どこで間違えたかお教え下さい。

  • 【複素関数】

    複素関数の積分の質問です。 Ir=1/2πi×∫f'(z)/f(z)dz (原点中心,半径rの円Crで積分) について、f(z)=(zのn次多項式)のとき、半径 r を十分大きいものとして Ir(つまりは、関数f'(z)/f(z)の全留数の和)を求めたいのですが この場合、特異点はどのようになるのでしょうか。 f(z)=0とは置いたものの、そのあとの方針が立たず、 うまく求めることができません。 数学のできる方がおられましたら、 ご享受下さい。よろしくお願いします。

  • 関数論?の問題

    f(z)はz=aで正則とし、f'(a)≠0とし、g(ζ)はζ=f(a)で一位の極で、その留数がAとする。 このとき、Res(g(f(z));a)を求めよ。 という問題が分かりません。どうか教えてください。お願いします。

  • 複素積分の問題について。

    複素積分の問題を解いてみたのですが、手元に答えがないうえに合っているか自信がないので、チェックしていただけると助かります。解法に誤りがあったらどうぞ指摘してください。自分の中では、留数の求め方が怪しいです。 以下、積分の経路Cは原点中心半径8の円で正の向きとします。 (1)∫ 1/sin(z) dz (2)∫ 1/(1-cos(z)) dz (3)∫ (1+z)/(1-e^z) dz (4)∫ tan(z) dz (1)∫ 1/sin(z) dz f(z)=1/sin(z) について、f(z) は z=mπ で特異点をとり、特にCの内部では z=0,±π,±2π が特異点となる。 ここで各点における留数を求めると、 Res(0)=1 Res(π)=-1 Res(-π)=-1 Res(2π)=1 Res(-2π)=1 となるので、 ∫ 1/sin(z) dz=2πi(1-1-1+1+1)=2πi (2)∫ 1/(1-cos(z)) dz f(z)=1/(1-cos(z)) について、f(z) は cos(z)=1、つまり z=2mπ で特異点をとり、特にCの内部では z=0,±2π が特異点となる。ここで f(z) を z=0 のまわりで展開すると、 f(z)=1/(1-1/2(z^2)+1/24(z^4)-・・・) =1/(1/2(z^2)-1/24(z^4)+・・・) であることから、Res(0)=0 同様に、Res(π)=0,Res(-π)=0 なので、 ∫1/(1-cos(z)) dz=2πi・0=0 (3)∫ (1+z)/(1-e^z) dz f(z)=(1+z)/(1-e^z) について、f(z) は z=2πim(mは整数)で特異点をとり、とくにCの内部では z=0,±2πi で特異点となる。ここで、 Res(0)=-1 Res(2πi)=-1-2πi Res(-2πi)=-1+2πi となるので、 ∫(1+z)/(1-e^z) dz=2πi(-1-1-2πi-1+2πi)=-6πi (4)∫ tan(z) dz f(z)=tan(z)=sin(z)/cos(z) について、f(z) は z=(2m+1)π/2 で特異点をとり、特にCの内部では z=±π/2、±3π/2,±5π/2 で特異点となる。ここで、 Res(±π/2)=-1 Res(±3π/2)=-1 Res(±5π/2)=-1 となるので、 ∫tan(z) dz=2πi・(-6)=-12πi

  • 複素関数 零点 極

    n位の零点を持つ関数の形としてはf(z)=(z-a)^n*(任意の関数)しかないのでしょうか。 また、n位の極もf(z)=(z-a)^(-n)*(任意の関数)しかないのでしょうか。

このQ&Aのポイント
  • 自宅から持ち出したキヤノン製品のTS8230をパソコンからプリントアウトしようとしていますが、オフラインと表示されてしまいプリントできません。
  • 自宅では正常にプリントできていたのに、持ち出した先のPCではプリントできなくなってしまった原因について考えます。
  • プリンター側で設定を確認しても問題なさそうで、PC側での設定を見直す必要があるかもしれません。
回答を見る