∫(c,(z+1)/z(z-i)^2)dzの値を求めよ

このQ&Aのポイント
  • 質問文章の問題を解く際の方針について説明しています。
  • それに基づいて計算を進め、最終的な答えを求めています。
  • 答えは2πiです。
回答を見る
  • ベストアンサー

∫(c,(z+1)/z(z-i)^2)dzの値を求めよ。

識者の皆様宜しくお願い致します。 下記の問題を解いているのですが自信がいまひとつです。 このようなとき方でいいでしょうか? [問]Cが円|z-i=1/2で反時計回りの向きとする時、∫(c,(z+1)/z(z-i)^2)dzの値を求めよ。 [解] f(z)=z^(-1)(z+1)(z-i)^(-2)において、単純閉曲線|z-i|=1/2の内部ではz=iのみで特異点(つまり、孤立特異点)を持ち、iが2位の極となる。 (∵『f(z)={Σ(k=1..n,(z-ak)^sk}/{Σ(k=1..m,(z-bk)^tk} (但し、a1,a2,…,anは複素数。b1,b2,…,bmは相異なる複素数。s1,s2,…,sn,t1,t2,…,mkは自然数)とする時、bk(k=1,2,…,m)は孤立特異点となり、bkをtk位の極という』) よって ∫(c,(z+1)/z(z-i)^2)dz=2πiRes(i,f) (∵『「留数定理」f(z)は単純閉曲線Cの内部に孤立特異点z1,z2,…,znを持つ他はCの内部と周を込めて正則とする。この時、∫(c,f(z)dz=2πiΣ(j=i..n,Res(zj,f))』) =2πi・lim(z→i,d/dz{(z-i)^2(z+1)/(z(z-i)^2)}) (∵z0がk位の極の時、Res(z0,f)=1/(k-1)!lim(z→z0,d^(k-1)/dz^(k-1)((z-z0)^k)f(z)) =2πi・lim(z→i,d/dz{(z+1)/z}) =2πi・lim(z→i,-1/z^2) =2πi・1 =2πi

質問者が選んだベストアンサー

  • ベストアンサー
  • kevin23
  • ベストアンサー率37% (26/70)
回答No.1

たぶんあっていると思いますよ!!^^

cchisako
質問者

お礼

有難うございます。 お陰様で安心致しました。

関連するQ&A

  • 留数の計算

    問: f(z)=1/(z-1)(z+3)^2 の孤立特異点における留数を求めよ。 僕の答え:      孤立特異点は、1と-3       z=1は、1位の極、z=-3は、2位の極      よって、公式より、      Res[z=1]f(z)=Lim z→1 (z-1)f(z)=1/(1+3)^2 = 1/16      Res[z=-3]f(z)=Lim z→ー-3 1/(2-1)! d/dz{(z+3)^2f(z)}        =-1/(z-1)^2=-1/(-3-1)^2 = -1/16 で、足したら0になる!! これは、積分の留数定理から言っておかしいと思います。 恐縮ですが、どこで間違えたかお教え下さい。

  • 複素積分の問題について。

    複素積分の問題を解いてみたのですが、手元に答えがないうえに合っているか自信がないので、チェックしていただけると助かります。解法に誤りがあったらどうぞ指摘してください。自分の中では、留数の求め方が怪しいです。 以下、積分の経路Cは原点中心半径8の円で正の向きとします。 (1)∫ 1/sin(z) dz (2)∫ 1/(1-cos(z)) dz (3)∫ (1+z)/(1-e^z) dz (4)∫ tan(z) dz (1)∫ 1/sin(z) dz f(z)=1/sin(z) について、f(z) は z=mπ で特異点をとり、特にCの内部では z=0,±π,±2π が特異点となる。 ここで各点における留数を求めると、 Res(0)=1 Res(π)=-1 Res(-π)=-1 Res(2π)=1 Res(-2π)=1 となるので、 ∫ 1/sin(z) dz=2πi(1-1-1+1+1)=2πi (2)∫ 1/(1-cos(z)) dz f(z)=1/(1-cos(z)) について、f(z) は cos(z)=1、つまり z=2mπ で特異点をとり、特にCの内部では z=0,±2π が特異点となる。ここで f(z) を z=0 のまわりで展開すると、 f(z)=1/(1-1/2(z^2)+1/24(z^4)-・・・) =1/(1/2(z^2)-1/24(z^4)+・・・) であることから、Res(0)=0 同様に、Res(π)=0,Res(-π)=0 なので、 ∫1/(1-cos(z)) dz=2πi・0=0 (3)∫ (1+z)/(1-e^z) dz f(z)=(1+z)/(1-e^z) について、f(z) は z=2πim(mは整数)で特異点をとり、とくにCの内部では z=0,±2πi で特異点となる。ここで、 Res(0)=-1 Res(2πi)=-1-2πi Res(-2πi)=-1+2πi となるので、 ∫(1+z)/(1-e^z) dz=2πi(-1-1-2πi-1+2πi)=-6πi (4)∫ tan(z) dz f(z)=tan(z)=sin(z)/cos(z) について、f(z) は z=(2m+1)π/2 で特異点をとり、特にCの内部では z=±π/2、±3π/2,±5π/2 で特異点となる。ここで、 Res(±π/2)=-1 Res(±3π/2)=-1 Res(±5π/2)=-1 となるので、 ∫tan(z) dz=2πi・(-6)=-12πi

  • [問]∫_C exp(-2πz)dzの値を求めよ

    曲線Cを図の通りとする。 積分路変形の原理 「複素関数f(z)が単連結領域Dで正則ならば,D内の任意の2点α,βを結ぶ曲線Cに沿った ∫_C f(z)dzは積分路Cの採り方によらず,常に一定の値を採る」 [問]∫_C exp(-2πz)dz, where C is the contour. という積分を求める問題です。 Cよりも簡単な直線C_1:z_1(t):=πt-it+i (但し,0≦t≦1)とするとdz_1(t)/dt=π-iなので ∫_C exp(-2πz)dz=∫_C exp(-2πz_1)dz_1 (∵複素平面は単連結で複素平面上の任意の点zに於いて関数exp(-2πz)は正則。 よって,積分路変形の原理が使える) =∫_0^1 exp(-2πz_1(t))dz_1(t)/dt・dt =∫_0^1 exp(-2πz_1(t))(π-i)dt =∫_0^1 πexp((-2π^2+2πi)t-2πi)-iexp((-2π^2+2πi)t-2πi))dt =π/(-2π^2+2πi)[exp(-2π^2+2πi)t-2πi)]_0^1-i/(-2π^2+2πi)[exp(-2π^2+2πi)t-2πi)]_0^1 =(π-i)/(-2π^2+2πi) ・exp(-2π^2)-exp(-2πi) となったのですがこれで正しいでしょうか?

  • 複素関数の問題です。

    f(z) = cos(2z) - sin(z) Cを原点を中心とする半径1の半時計周りの演習とし、nを自然数とする。このときの積分値を求めよ。 ∫[C] f(z) / z^n dz +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ という問題です。 g(z) = f(z) / z^n としてz = 0が一位の極なので留数定理より Res = lim[z→0]{(z-0)g(z)} = lim[z→0]{f(z)/z^(n-1)} より Res = f(0) = 1 として極は半径1の円周のなかにz = 0のみなので ∫[C] f(z)/z^n dz = 2πi としました。 これで合っているのでしょうか? よろしくお願いします。

  • 積分値を留数定理で求める方法

    問題:次の積分の値を求めよ ∫exp(-z)/(z(z-1)(z-3))dz 但し、複素積分は円周 |z|=2 上半時計回りに行うものとする。 上の問題を、留数定理を用いて以下のように解きました。 C : z=2×exp(iθ) 極は0、1、3でそれぞれ1位であり、 Res[f(z),z0]=lim[z→z0] (z-z0)f(z) であるから R(1)=(1/3-1/12)×exp(-1) R(3)=(1/9-1/4)×exp(-3) R(0)=1/2-1/18 よって、留数定理より、 与式=2πi(R(0)+R(1)+R(3)=2πi(4/9 - (1/4)×exp(-1) - (5/36)×exp(-3)) 質問したいことは、 1、この問題を留数定理で解く方針は正しいか 2、特異点が極かどうか(極でないとRes[f(z),z0]=lim[z→z0] (z-z0)f(z)が使えないので) 3、留数定理の使い方が正しいか 4、上記の解答は正しいか です。回答よろしくお願いします。

  • dz/√(1-z^2)(1-k^2z^2)は正則か

    dz/√(1-z^2)(1-k^2z^2)は極をもたない(正則)であることを証明せよ。 (z=±1,±1/kも極でない) という問題があったのですが,どうか教えていただけないでしょうか? これを使うか分からないですが参考程度に写真あげておきます

  • 複素積分についての質問です

    複素平面において、点√3iを始点とし、点-√3iを終点とする線分をC1とし、 また、{Re(z)≦0,|z|=√3}を満たす半円をC2とした場合(向きは反時計回り)、 (1)∫_{C1}(1/(1+z))dz (2)∫_{C2}(1/(1+z))dz (3)∫_{C1}(zの共役複素数)dz (4)∫_{C2}(zの共役複素数)dz を求めよといった問題について、 (1)∫_{-√3i}^{√3i}(1/(1+z))dz =log(1-√3i)-log(1+√3i) =log((1-√3i)/(1+√3i)) =log((-1-√3i)/2) =log1+iarg(4pi/3)=iarg(4pi/3) (2)∫_{C2-C1}(1/(1+z))dzは留数定理より、 =2pi*Res(1/(1+z),-1)=i2piとなるから、 ∫_{C2}(1/(1+z))dz=i*2pi-iarg(4pi/3) (3)∫_C1(x-iy)d(x+iy) =∫_{0}^{0}xdx-i∫_{√3i}^{√3i}ydy =-i[y^2/2]_{-√3i}^{√3i}=0 (4)∫_{C2-C1}(zの共役複素数)dzはこの領域内に 特異点を含まないから積分値は0になる。 したがって∫_{C2}(zの共役複素数)dz=0 として、求めたのですが、これであってますでしょうか? 一番の疑問点は、(1)と(2)では、経路の違いにより、 積分値が異なっていますが、(3)と(4)では、同じになって しまっていることです。 ご回答よろしくお願い致します。

  • 留数定理の問題

    閉曲線cをz=2とするとき∫c 1/(z^2+1)dzの積分値を求めろという問題で 特異点は多分i,-i 留数が1/2i,-1/2i になるんじゃないかなと思うのですが、そうすると積分値が I=2πi(Res(i)+Res(-i)=0でいいのでしょうか?それとも2πiですか?

  • ∫1/(z-1)dz C:|z|=1 の求め方

    次のように考えてみました。 z=1は不正則点であるので、z=cosθ+isinθ (0<θ<2π)とおき、 ∫1/(z-1)dz =∫[0→2π]1/(cosθ+isinθ-1)dz/dθdθ =∫[0→2π](-sinθ+icosθ)/(cosθ+isinθ-1)dθ =∫[0→2π]i(cosθ+isinθ)/(cosθ+isinθ-1)dθ =∫[0→2π]i(cosθ+isinθ){cosθ-(isinθ-1)}/(cosθ+isinθ-1){cosθ-(isinθ-1)}dθ =∫[0→2π]i{(cosθ)^2-isinθcosθ+cosθ+isinθcosθ+(sinθ)^2+isinθ}/{(cosθ)^2-(isinθ-1)^2}dθ =∫[0→2π](1+isinθ+cosθ)/2sinθdθ =1/2∫[0→2π]1/sinθdθ+i/2∫[0→2π]dθ+1/2∫[0→2π]cosθ/sinθdθ =1/2[log|tanθ/2|][0→2π]+i/2[θ][0→2π]+1/2[log|sinθ|][0→2π] =πi 以上のような考え方でよろしいのでしょうか?宜しくお願い致します。

  • 特異点の種類について

    ∫1/(Z+3)(Z+1)dzこれらの特異点の種類を示せということなのですが、これらの特異点Z=-1,-3はK位の極になるのでしょうか?もしくは真性特異点になるのでしょうか?どなかたご指導をお願いします。