• 締切済み

フェルマーの定理の式でn=-1,-2のときは?

x^n+y^n=z^nの自明でない整数解を求める問題があります。 n≧3のときには、存在しません。フェルマーが予想し、ワイルズが証明しました。 n=2のときには、ピタゴラス数といってたくさん解がありますが、たとえば、 d , m , n を任意の自然数として, x = d(m^2 - n^2),  y = 2dmn,  z = d(m^2 + n^2) といった解があります。 また、一つのピタゴラス数から次々に別のピタゴラス数を生成し、それで全部が尽くされる方法も知られています。 http://mathworld.wolfram.com/PythagoreanTriple.html n=1のときには、つまんない問題になります。 n=0のときには、存在しません。 n≦-3のとき、存在しないことは、すぐに考えれば分かると思います。 なので、問題なのは、n=-1,-2のときで、このとき解は無数に存在しますが、どう書き表せるのでしょうか? または、解を次々生成していく方法や、性質などはあるのでしょうか?

みんなの回答

noname#47894
noname#47894
回答No.1

x^(-2)+y^(-2)=z^(-2) を満たす自然数の組(x,y,z)を見つけたとして、 (x,y,z)=(c/p、c/q、c/r)(p、q、rは自然数)を満たす、自然数cが存在します(例えばcは最小公倍数)。 このとき、(c/p)^(-2)+(c/q)^(-2)=(c/r)^(-2)なので、 結局、p^2+q^2=r^2 が成り立ちます。 したがって、ピタゴラス数(p,q,r)の組から、最小公倍数を求め、 それを、p,q,rでそれぞれ割れば、x^(-2)+y^(-2)=z^(-2) を見たす整数の組がみつかるのではないでしょうか? (3,4,5)から、(20,15,12)とか.... x^(-1)+y^(-1)=z^(-1) も同様に (1,1,2)から、(2,2,1)とか...

aiueo95240
質問者

関連するQ&A

  • フェルマーの最終定理の代数での解答です。どうでしょう?

    X,Y,Z,Nを0でない自然数とします。 X+Y+Z=X+Y+X・・・・・・(1) (1)式の両辺に(X+Y+Z)を掛けて (X+Y+Z)^2=(X+Y+X)^2・・・・・・(2) (2)式の右辺を展開、整理して (X+Y+Z)^2 =(X+Z)^2+(Y+Z)^2+2XY-Z^2・・・・(3) (3)式は(2)式と同値で恒等式です。 (3)式において、2XY=Z^2の関係を満たす自然数X,Y,Zの組を選ぶとき、全てのピタゴラス数を網羅します。 この(3)式の両辺に(X+Y+Z)^(N-2)を掛けると次の式ができます。 (X+Y+Z)^N =(X+Z)^2*(X+Y+Z)^(N-2) +(Y+Z)^2*(X+Y+Z)^(N-2) +(2XY-Z^2)*(X+Y+Z)^(N-2)・・・・(4) (4)式も明らかに恒等式です。 この(4)式を、題意の解の有無が判定しやすいように整理します。 (X+Y+Z)^N =(X+Z)^N*{(X+Y+Z)/(X+Z)}^(N-2) +(Y+Z)^N*{(X+Y+Z)/(Y+Z)}^(N-2) +(2XY-Z^2)*(X+Y+Z)^(N-2)・・・・(5) (5)式も恒等式です。 (5)式は N=1のときは(1)式になり N=2のときは(3)式になり (3)式は前述のとおり 2XY=Z^2の関係を満たす自然数X,Y,Zの組で、全てのピタゴラス数を網羅します。 さて、(5)式において、N>2の場合、これは以下の条件のときにピタゴラス数の形に書けると考えられます。 {(X+Y+Z)/(X+Z)=1}∩{(X+Y+Z)/(Y+Z)=1}∩(2XY=Z^2)・・・・・・・(6) しかし、2XY-Z^2はともかく (X+Y+Z)/(X+Z)=1 と (X+Y+Z)/(Y+Z)=1 はありえないので N>2の場合は(5)式はピタゴラス数の形には書けない。 すなわち、N>2の場合はフェルマーの問題に解はない。 要約すれば以上なのですが、この証明を得るために、サンゴ礁数列という層状の数列を考えついてから約20年かけて、途中でインターネットで皆様に色々教えていただきながらここまできました。 自分ではこれで完了したと考えているのですが、私は数学の全くの素人でほんとうのところは分からないとも考えられます。 そこで、専門家の方のご意見をうかがいたいと、質問いたしました。 よろしくお願いいたします。 フェルマーさんはこのように自然数3個で等式の両辺を表現することを発見していたと思うのですが、どうでしょう?

  • フェルマーの定理の変形バージョン

    n>=3以上とするとき、 x^n+y^(n+1)=z^n を満たす自然数x,y,zは存在しますか? フェルマーの定理と違うところは、y^n ではなく、y^n*y=y^(n+1) となっているところです。 この公式を満たすxyzは存在しますか?

  • フェルマーのやらなかったこと

    おなじみのフェルマの定理: n を正の整数とすれば、 2<n のとき x^n + y^n = z^n をみたす整数の組(x,y,z)は存在しない。 ですけども、 ここで、n を整数全体にに拡張して、 n=1 のときは、いくらでも整数解があります。 n=0 のときは、無意味です。(整数解は無い) n=-1 のときは、たとえば、(x,y,z)=(4,4,2)はひとつの解ですよね。 さて、n=-2,-3,-4,-5,・・・ などのときを調査するのは、数学的に意味のある営みでしょうか? 忌憚なきご意見・見通しをお願いいたします。 必要ならば、高額のため、「ガウス整数」なども俎上にあげていただくことも期待しています「。

  • フェルマーの最終定理に関連して

     変な質問で申し訳ないのですが、n が 3 以上の整数の時   x^n + y^n = z^n を満たす有理数の組 (x,y,z)、もしく実数の組 (x,y,z)は存在するのでしょうか。

  • フェルマーの最終定理

    フェルマーの最終定理ってありますよね?Xのn乗+Yのn乗=Zのn乗  これに3以上の整数解は(nの)ないってやつですよね? これの証明ってどんなのですか?

  • ペル方程式の自然数解と有理数解

    Dを平方数でない自然数とするとき、ペル方程式 x^2-Dy^2=1 は非自明な整数解(x,y)∈Z^2、特に自然数解(x,y)∈N^2を持つことは有名な事実です。Dirichlet原理(無理数の整数周期性の非存在)を用いた抽象論的証明や、二次無理数の(正則)連分数展開の周期性を用いた構成的証明が知られていると思いますが、非自明な有理数解でよいのなら、 (x,y)=((D+n^2)/(D-n^2),2n/(D-n^2))が確かに解を与えることは直ちにわかります。必要というわけではないですが、n^2<D<(n+1)^2としておきます。 もちろん(D+n^2)/(D-n^2)と2n/(D-n^2)が自然数になるようなD、たとえば、D=2,3,5,6,8,10,…などは非自明な自然数解の存在も同時にわかるわけですが、たとえばD=7などでは自然数解の存在まではこれだけではわかりません。そこで、有理数解の存在を既知とした場合、それから自然数解の存在を導く証明はないのか、と考えたのですが、思いつきませんでした。もし何かよい方法があればご教授いただけませんか?

  • 三平方の定理 解の媒介変数表示

    x^2+y^2=z^2 の整数解は、 整数m、nを用いて x=m^2-n^2 y=2mn z=m^2+n^2 と表せることの導き方をお願いします。 因みに x=2m+1,y=2m^2+2m,z=2m^2+2m+1 は導き出せました。

  • にゃんこ先生の自作問題、不定方程式で解を生成、ペル方程式ピタゴラス数東大入試

    にゃんこ先生といいます。次のようにゃ問題が知られています。 ペル方程式 x^2-ny^2=1 (ただし、nは平方数ではない) の整数解は、一つの解を見つければ、そっからすべての解が生成される。 http://ja.wikipedia.org/wiki/%E3%83%9A%E3%83%AB%E6%96%B9%E7%A8%8B%E5%BC%8F ピタゴラス数 a^2+b^2=c^2 の自然数解(ただし、gcd(a,b,c)=1)は、(a,b,c)=(3,4,5)からすべての解が生成される。 http://mathworld.wolfram.com/PythagoreanTriple.html 2006東大入試問題 x^2+y^2+z^2=xyz(ただし、x≦y≦z) の自然数解。 http://www.yozemi.ac.jp/nyushi/sokuho/sokuho06/tokyo/zenki/sugaku_ri/mon4.html と http://www.yozemi.ac.jp/nyushi/sokuho/sokuho06/tokyo/zenki/sugaku_ri/kai4.html 入試には解は無数あることを証明させていますが、実際にはすべての解を求めることが出来ます。 その方針は、 (1)y≦3となるものは、(x,y,z)=(3,3,3),(3,3,6) (2)(a,b,c)が解のとき、(b,c,bc-a)も解でc<bc-a (3)逆に、(a,b,c)が解のとき、(ab-c,a,b)も解。 このとき、b≧aとなるが、b=aのときは、(x,y,z)=(3,3,3),(3,3,6)のときのみ。 b>aのときは、繰り返すことでそれらに帰着される。 つまりは、(x,y,z)=(3,3,3)を出発して、 (a,b,c) → (b,c,bc-a) を考えることで、すべての解が生成されます。 ペル方程式の生成理論は分かるのですが、ピタゴラス数や2006東大入試 において、解の生成する方法はどのように考えられたのでしょうか?

  • フェルマの小定理と位数に関する質問です

    問題) pを素数とします。また、aをpで割り切ることのできない整数とします。 この時、a^n≡1(mod p)となる最小の正整数nをmとすると p≡1(mod m)であることを証明したいです。 証明) まず、フェルマの小定理より、 n=p-1のとき、a^n≡1(mod p)が成り立つことが分かります。 よって、n=p-1がa^n≡1(mod p)となる最小の正整数nの場合、 m=p-1なので、明らかにp-1をmで割り切ることができるため、 p≡1(mod m)である。 (ここからが分かりません。。。) 次に、n=p-1がa^n≡1(mod p)となる最小の正整数nでない場合、 つまり、m<p-1となるmが存在する場合、 そのmによって、p≡1(mod m)が成り立つことを証明したいのですが、よく分かりません。 どなたか詳しい方、ご教授お願いします。 途中までの証明も不適切(不要)でしたら指摘してください。 よろしくお願いします。

  • フェルマーの大定理 n=3の場合の証明

    フェルマーの大定理・n = 3の場合の証明について質問です。 オイラーはx^3 + y^3 = z^3をx = a + b、y = a - bとおき、整理することによって、 z^3 = 2a(a^2 + 3b^2) と変形し、n = 3の場合のフェルマーの大定理を証明しました。 そこで、質問です。 【2a】と【a^2 + 3b^2】が、互いに素な場合は無限降下法をつかって証明できるようですが、 【2a】と【a^2 + 3b^2】が、互いに素ではなく、1以外の公約数を持つ場合、どのようにして証明すればよいのでしょうか? 皆様のご教授をお待ちしております。