• ベストアンサー
  • 困ってます

内積利用条件付最大最小問題

こんにちは。 問題 xy平面上に点A(2,3)をとり更に単位円x^2+y^2=1上に点P(x,y)をとる。また原点をO(オー)とする。2つのベクトル OA、OP(ベクトル)のなす角をθとするとき、内積OA×OP(ベクトル)をθのみであらわせ。また、実数x,yが条件x^2+y^2=1を満たすとき、2x+3yの最大値、最小値を求めよ。 答えは√13cosθと最大値√13,最小値-√13です。 わからないところは、最大最小を求めるところの回答に、2x+3y=内積OA×OP(ベクトル)=√13cosθ というところがあるのですが、なぜこのようになるのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数5
  • 閲覧数783
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

 先ず、内積の表し方ですが、「×」を用いると外積を表すことになり混同しやすいので、「・」(なかてん)を使われたほうがいいでしょう。  さて、問題ですが、点Pは原点を中心とする単位円上にありますので、|OP|=1ですから、内積OA・OP(ベクトル)をθだけで表すと、次のようになります。   OA・OP=|OA|・|OP|=√(2^2+3^3)・1・cosθ= √13cosθ  次に、点Pの座標を(x,y)で表すことにしますと、内積は、次のように表すこともできます。   OA・OP=(2,3)・(x,y)= 2x+3y  この2つの式は表し方は違いますが、同じ内積ですので、   2x+3y=√13cosθ という関係にあることが分かるのです。

共感・感謝の気持ちを伝えよう!

その他の回答 (4)

  • 回答No.5
  • repobi
  • ベストアンサー率30% (8/26)

No.3です。 ごめんなさい。 OA=(a,b),OB=(c,d)、∠AOB=θの時の内積は、 内積=ab+cd ではなく、内積=ac+bd です。 x成分、y成分のそれぞれの積の和です。。。。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

まとめてのお礼ごめんなさい。 皆さんのお陰でよくわかりました^-^。 本当にありがとうございました。

  • 回答No.4
  • T-gamma
  • ベストアンサー率55% (63/113)

まず、最初に注意を内積の場合はかならず“・”を使って下さい“×”の場合、内積ではなく外積(高校では習わない)の意味になってしまいますので。 さて、回答ですが内積の定義を確認します a→・b→=abcosθ a:a→の大きさ b:b→の大きさ θ:二つのベクトルの成す角 また、xy成分で表記すると、 (x,y)・(a,b)=xa+yb となります。よって今回は OA→・OP→=√13*1*cosθ OA→・OP→=(2,3)・(x,y)=2x+3y よって 2x+3y=√13cosθ  となります。

共感・感謝の気持ちを伝えよう!

  • 回答No.3
  • repobi
  • ベストアンサー率30% (8/26)

OA=(a,b),OB=(c,d)、∠AOB=θの時の内積は、 内積=|OA|・|OB|cosθ の他に、 内積=ab+cd  と言うのがあります。 教科書見てください。 この問題では、最初に"内積=|OA|・|OB|cosθ"によって内積を出させて、 次に、"2x+3y=内積=|OA|・|OB|cosθ"で、"2x+3y=√13cosθ"と言うのを出してますね。

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • debut
  • ベストアンサー率56% (913/1604)

OAとOPの内積を成分で計算すればA(2,3),P(x,y) なので、2x+3y です。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 内積の最大最小です

    点Pが点A(1,2)を中心とする半径1の円周上を動くときの内積OA・OPの最大値と最小値を求めよ。という問題なのですが、最大となる点PはOAの延長線と円との交点であるとわかったのですが、最小となる点PもOAと円とのもうひとつの交点でいいのでしょうか。

  • 接点の存在範囲と内積の最大最小

    xy平面上の3点O(0,0)、A(6,2)、B(1,3)に対して、 点CをOC=sOA+tOB(ベクトル)で定める。 (1)s、tがs+t=1の条件を満たしながら、変化するとき、 Cの描く図形は傾き[ア]の直線であり、x軸と([イ]、0)で交わる。 (2)s、tがs≧0、t≧0、0≦s+t≦1の条件をみたしながら変化するとき、 Cの存在する範囲の領域の面積は[ウ]である。 (3)s、t、がs≧0、t≧0、1≦2s+t≦2の条件を満たしながら変化するとき Cの存在す領域をFとする。 OC=2s・(1/2)OA+tOB(ベクトル)より、Fに属する点のうち y座標が最大となる点は([エ]、[オ])であり、 y座標が最小となる点は([カ]、[キ])である。 Fの面積は[ク]である。 (4)Fに属する2点P、Q(P=Qでもよい)について、 内積OP・OQ(ベクトル)の最大値は[ケ]、最小値は[コ]である。 問題がかなり長くて申し訳ないです・・・ 最後の問題が難しいらしいです。 (1)(2)の問題を記述で書くとき どのようにあらわしたらよいでしょうか? 解けるかたがいらっしゃいましたら 解説お願いしますm(__)m

  • 内積がわからない

    内積が具体的に何を指しているのかわかりません。 →a・→b=→|a|→|b|cosθ 図形的にどこを指しているんですか? あと、教科書で何回読んでも理解不能なところがあったので教えてください。 内積→a・→b=→|a|→|b|cosθは次のようにしてみることもできる。 →a=→OA、→b=→OBのなす角をθとし、 点Bから直線OAに垂線BB´をおろすと →a・→b=OA×OBcosθは次のようになる。 0°≦θ<90°のとき →a・→b=OA×OB´ 90°≦θ<180°のとき →a・→b=-OA×OB´ 図がないのでわかりずらいかもしれませんがよろしくお願いします。

  • 三角関数の問題です。

    実数x、yが11x^2+12xy+6y^2=4を満たす時、 x^2+y^2の最大値と最小値を次のように求める。 xy平面上の原点Oと他の点P(x,y)を結ぶ線分OPの長さをr、 x軸と動径OPのなす角をθとすると、 1/r^2(11x^2+12xy+6y^2)=(ア)cos^2θ+(イウ)sinθcosθ+(エ) =(オ)/(カ)cos2θ+(キ)sin2θ+(クケ)/(コ)=(サシ)/(ス)sin(2θ+α)+(クケ)/(コ)である。 但し、sinα=(セ)/(ソタ)、cosα=(チツ)/(テト)である。 従って、x^2+y^2の最大値は(ナ)、最小値は(ニ)/(ヌネ)である。 まったく手に負えません… 問題の意味が全然わからないのですが どなたかわかりやすく説明していただけませんか?

  • 最大、最小の問題で

    (1)条件x^2+y^2=4(x,yは実数)のもとで、2x+yの最大値、最小値を求めよ (2)正の数x,yが、2/x+3/y=1を満たすとき、xyの最小値を求めよ という問題が分からないので解説してください。 (1)は、2x+y=k(kは定数?)とおくのですか??

  • 最大値・最小値を求める問題

    実ベクトルx=(x1,x2),y=(y1,y2)に対して ノルム||x|| = √<x,x>, 内積<x,y>=x1y1+x2y2と定義する。 また実行列A,BをA=(a1,a2) a1=t_(√2,0),a2=t_(0,2),B=(b1,b2),b1=t_(1,2√2),b2=(2√2,3)とする。(tは転置を意味しています) 今||x||=1とする。この時以下を証明せよ。 (1)f(x)=<Ax,Ax>とすると、2≦f(x)≦4 (2)g(x)=<x,Bx>とすると、-1≦g(x)≦5 (3)h(x)=<Ax,BAx>とすると、-4≦h(x)≦20 (1)(2)は解けたのですが(3)がわかりません。 h(x)=2x1^2+16x1x2+12x2^2となったので、 x1=cosθ,x2=sinθと置き換えて計算すると、 2x^2+16xy+12y^2 =2+16sinθcosθ+10sin^2θ =2+8sin2θ+5(1-cos2θ) =7+8sin2θ-5cos2θ ここで三角関数の合成をしても√89という値が出るため、 最小値は明らかに整数にならないのです。 (2)はこの方法で上手く最大値、最小値が求まったのですが… どのように解決すればいいのか教えてください。

  • ベクトル 青チャート

    実数x,y,a,bが条件x^2+y^2=1および(a-2)^2+(b-2√3)^2=1を満たす時、ax+byの最大値、最小値を求めよ。 解答には「点Pは円x^2+y^2=1の周上を動き、点Qは円(x-2)^2+(x-2√3)^2=1・・・(1)の周上を動く。 OP→とOQ→のなす角をθとすると ax+by=OP→・OQ→=|OP→||OQ→|cosβ=√1・|OQ→|cosβ=|OQ→|cosβ 0°≦β≦180°より、-1≦cosβ≦1であるから、 ax+byが最大となるのは、|OQ→|が最大でcosβ=1のときで、 最小となるのは|OQ→|が最大でcosβ=-1のときである。 円(1)の中心はA(2,2√3)であり、直線OAと円(1)の交点のうち原点から遠い距離にある点をQ1とすると、|OQ→|の最大値は OQ1=OA+AQ1=√2^2+(2√3)^2+1=5 (ちなみにここの√2^2+(2√3)^2は計算していただいたらおわかりのように全て√でくくられています) よって、ax+byの最大値は5 最小値は-5」 解答に書いてあることがいまいち理解できないので 暗記に走ってしまいそうです。 高1の最後の春休みにベクトルを克服しようと思うので 回答者様のお力の方をお借りしたい所存でございます。 まずわからないところ(1) √1・|OQ→|cosβ とありますが√1はどこからきたのですか? また√1とする意味も分かりません。普通に1とすればいいのではと思ってしまいます。 わからないところ(2) 「点Pは円x^2+y^2=1の周上を動き、点Qは円(x-2)^2+(x-2√3)^2=1・・・(1)の周上を動く。」 これはもう・・・ 日本語の問題というべきでしょうか。 なんで(1)はxについての式みたいになっているのでしょうか? このようにして表したわけがわかりません。 あとの解説はなんとなくわかるのですが・・・ 誰か分かる方教えてください。お願いします。

  • 最大値最小値の求め方

    x^2+y^2=1のとき、(2x+y+1)/(3x+y+5)の最大値・最小値を求めよ。 分数になっていることから、この問題を傾きの最大・最小で解こうと考えました。 そのために、Y=2x+y,X=3x+y とおく。そして、(X,Y)の領域について考えようとしました。 ベクトル(X,Y)=x(3,2)+y(1,1)=cosθ(3,2)+sinθ(1,1)から、、(X,Y)の領域がわかるのでないか と思いました。その領域も(-5,-1)との傾きの最大と最小がわかる領域であればよいのですが、 cosθ(3,2)+sinθ(1,1) をどう解釈すれば良いでしょうか。 この方法がうまくいかないので、x=cosθ,y=sinθとして、(2x+y+1)/(3x+y+5)を三角関数の式 として捉えてできないかも考えましたが、できませんでした。 この2つの方法について、アドバイスをおねがいします。

  • 数学II ベクトルの内積問題について

    高一です。以下の問題が分からず困っています。 (ちなみに→aというのはaベクトル、|a|は絶対値aのつもりです。 記号が分からなかったので適当におかせていただきました) 問一 ΔABCは,AB=√34,BC=4であり,ベクトルの内積に関して    →AB×→BC = 3→BC×→CA が成り立つとする.    線分BCを3:1に内分する点をHとし,→HA=→a,→HB=→bとおく.    (1) →aと→bが直角に交わることを示せ.    (2) |→a|,|→b|を求めよ.    (3) 内積→CA×→ABの値を求めよ. 問二 平面上にΔOABがあり,OA=5,OB=6,AB=7を満たしている.    s,tを実数とし,点Pを→OP=s→OA+t→OBによって定める.    (1) s,tが s,t≧0, 1≦s+t≦2 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ.    (2) s,tが s,t≧0, 1≦2s+t≦2, s+3t≦3 を満たすとき,      点Pが存在し得る範囲分の面積を求めよ. 問三 ΔOABの辺AB,OBの長さをそれぞれ a,b とする. 辺OA上に OE:EA=1:4 となるように点Eをとる.    線分OCと線分BE,ADとの交点をそれぞれP,Qとし, 線分ADと線分BEの交点をRとする.    →a=→OA,→b=→OBとする.    (1) →PQを→a,→bで表せ    (2) →PRを→a,→bで表せ    (3) |→a|=√5,|→b|=1, →a×→b = 1のとき,ΔPQRの面積を求めよ さっぱりです。明日試験があるというのに… 教えていただけると幸いです。

  • 空間(長いです)

    「空間において、定点O,Aがあり、 FはOAの中点を中心とする半径1の球面である。 2点X1,X2をF上に取る時、4点O,A,X1,X2を頂点とする四面体の 体積の最大値を求めよ」 という問題で、(全部書くと長くなるので質問したい所だけ書くと) 『直径OAをx軸上に置き、△OX1Aをxy平面上に取る。 原点をO'として、O(1,0,0),A(-1,0,0)とする。 点X2からxy平面に降ろした垂線の足をHとし、O'Hとx軸の正方向とのなす角をβ、O'X2とz軸の正方向とのなす角をθとすると X2(sinθcosβ,sinθsinβ,cosθ)となる』 とあるのですが、 どうしてX2座標のx座標とy座標はsinθが掛かってるんですか? また、Hの座標は(cosβ,sinβ,0)でOKですか? 回答よろしくお願いします。