• 締切済み

P( Q ∩ (0,1] )=0 ????なぜ??

こんにちは。なぜ P( Q ∩ (0,1] )=0 なのでしょうか? 説明では、 Q ∩ (0,1]が可算集合だからといってましたが、全く理解できません。もしよければ、説明してください。

みんなの回答

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.2

いやはや・・・記号の説明なしですか・・・ Qは有理数,Pはさしずめ, ルベーグ測度あたりか? それとも何かの確率・・・ま,これはなかろうが. ま,ルベーグ測度だと仮定しよう ・測度の「完全加法性」って知ってますか? ・一点のルベーグ測度は知ってますか? ・測度の「単調増加性」を知ってますか? これらを使えば ・Qは「可算個の点の和集合」 ・測度の完全加法性より,Qの測度は各点の測度の和 ・一点のルベーグ測度は0 ・よってQのルベーグ測度は0 ・Q ∩ (0,1] はQの部分集合だから測度は0以下 ・測度は0以上 よって, Q ∩ (0,1] のルベーグ測度は0

  • koko_u
  • ベストアンサー率12% (14/116)
回答No.1

もうね、アホかと。 Q は有理数の集合なんだろうなぁ。 P って何だろ?

関連するQ&A

  • p⇒q=(¬p)∨qについて

    p⇒qは理解できるのですが(真理表も)、なぜこの定義が(¬p)∨qなのかさっぱりわかりません。 真理集合も違うのではないかとも思います。 よろしくおねがいします。

  • Q.無理数全体の集合Pについて|P|>?0を証明せよ。

    Q.無理数全体の集合Pについて|P|>?0を証明せよ。 レポートを提出したのですが、上記の問いのみ、(1)(下記)を中心に説明不十分とコメントされていました。 レポートは合格したので再提出はないのですが、解答はもらえないため、気になります。 どなたか、修正および補足などをお願いします。 A. Nを自然数全体の集合、Zを整数全体の集合、Qを有理数全体の集合、Rを実数全体の集合とする。 |P|≠アレフゼロを背理法で証明する。 |P|=アレフゼロと仮定すると、アレフゼロからPへの全単射が存在する。 アレフゼロ=|N|だから、NからPへの全単射がある。 A={-n|n∈N}とすると、|A|=|N|=|Q|だから、 A→Qの全単射がある。 Z-{0}=A∪N (A∩N=(空集合)) R=P∪Q (P∩Q=(空集合))だから、|N|=|P|、|A|=|Q|だから、 |Z-{0}|=|R| になる。 |N|=|Z-{0}|であるから、アレフゼロ=|N|=|Z-{0}|=|R|となり、矛盾である。 よって、|P|≠アレフゼロとなる。 また、Pは有限集合であるから|P|<アレフゼロではない。 以上により、|P|>アレフゼロとなる。

  • 真理値表の¬P∨QとP⇒Qについて

    (1)¬P∨QとP⇒Qが同値というのは、理解できます。 (2)¬P∨Qの場合の真理値表も同様に理解できます。 (3)しかし、P⇒Qの場合については、理解できません。   PがFの場合は、Qはどちらともいえないとするのがもっとも現実に即しているように思うのです。 一体どこがおかしいのでしょうか? 私の感覚ですか? それとも真理値表を定めるにあたって、何かルールを導入したために、日常の感覚から乖離してしまったのですか? だとすれば、それはどのようなルールなんでしょうか? 二値論理というルールがあることについては調べましたが、それだと(1)が矛盾してしまうのですが。 (1)(2)(3)全てを矛盾無く収める事ができません。 どうかご教授ください。

  • 「p→q」 と 「"pの否定"∨q」

    「p→q」 と 「"pの否定"∨q」 (1)「p→q」 と (2)「"pの否定"∨q」 は何故同じ意味なのでしょうか? 真理値表を書くと上記2つは等しくなることは解るのですが, p及びqを以下の様にすると,(1)と(2)が同じ意味にならない気がして, 混乱しております.ご教授願います. p : 2は偶数である q : x^2≧0である この様にp及びqを定義すると,(2)の真理値は1になると思うのですが, (1)の真理値が1にはならない気がします.なぜなら,pという仮定から qを導くことができないからです.

  • 今更聞けない「PならばQ」の考え方

    甥っ子に質問され明確に答えられません、 P→Qの真偽について、P,Qに変数が入った場合、どうなるのか? 例1 P:x=3 Q:x^2=9 でP→Q の真偽を考えるとき  これは任意のxについて考えるものなのでしょうか? この場合x=3が真の時x^2=9も真なのでP→Qは真。x=3が偽の時はQの真偽に関係なくP→Qは真なので、全てのxについて P→Q は真といえますが、 例2 P:x=3 Q:x^2=10 でP→Q の真偽を考えるとき x=3が真なら x^2=10は偽で P→Qは偽になりますが、x=3が偽なら Qに関係なくP→Qは真。 これは真偽が不明ととらえるのでしょうか? それとも任意のxで真とならないので偽ととらえるのでしょうか? 私自身はこれまであまり深く考えなく、P→Qを if P then Q ととらえてましたので、「Pは真と仮定して」が暗黙のうちに隠されていると思ってました。すなわち P→Q は (Pが真)で P→Q を考えていましたが、皆さんはどうなんでしょうか?

  • p=√2、q=√2は・・・

    p=√2、q=√2は、命題「p^2+q^2≦4ならばp+q≦2」の□である。 よろしくお願いします!

  • 【命題「P→Q」における論理の相対性について 】

    命題「P→Q」を否定、論理和、論理積の記号で 表記した場合、  (¬P)∨Q・・・(1)  ¬(P∧(¬Q))・・・(2) となることが書籍に記載されておりました。 (「プログラマの数学」(ソフトバンククリエイティブ)に(1) 「論理と集合のはなし」(日科技連)に(2) がそれぞれ掲載されていました。) ベン図や真理値表も併せて記されていたため、 「P→Q」が上記、2つの式で表記できることまでは 理解できました。 ここで、(1)から(2)、(2)から(1)を導出する場合に、 どのような式変形をすれば  (¬P)∨Q ≡ ¬(P∧(¬Q)) を証明できるのでしょうか? ド・モルガンの法則を導出する際に使う 「論理の相対性」が大いに関係していると (むしろ、「論理の相対性」そのもの?) 勘繰っているのですが、確証できません。 お知恵の拝借を頂けませんでしょうか? よろしくお願いします。

  • pならばq

    pならばq p⇒qを表す二つベン図の違いがわかりません。 pがqの必要条件を表すベン図と¬p∨qを表すベン図です。 宜しくお願いします。

  • 「または」と「かつ」と「でない」だけでP⇒Qをどう定義する?

    数学基礎論の入門書に "前節で「または」と「かつ」と「でない」だけでP⇒Qを定義した。" と記述してあります(PとQは命題)。 でも「ならば」の項目の所を見ても、 "数学ではならばというのを用いるこれを記号で⇒と書く" だけしか説明されてません。 どうやって 「または」と「かつ」と「でない」だけで「ならば」をどう定義するのでしょうか?

  • p^q=aのときq^pは?

    タイトルとおりなのですが、p^q=aのときq^pをaの式で表せるでしょうか。 質問しておきながら、不可能な気がするんですけど、もし不可能ならその証明を教えていただきたいです。おねがいします。